COMSOL: MEMS NOTES

AKSHANSH CHAUDHARY

COMSOL Multiphysics Notes, First Edition

Copyright © 2013 Akshansh

ALL RIGHTS RESERVED.

Presented by: Akshansh Chaudhary Graduate of BITS Pilani, Dubai Campus Batch of 2011

Course content by: Dr. Anand Kumar Then Faculty, BITS Pilani, Dubai Campus

Layout design by:

AC Creations © 2013

The course content was prepared during Spring, 2014. More content available at: www.Akshansh.weebly.com

DISCLAIMER: While the document has attempted to make the information as accurate as possible, the information on this document is for personal and/or educational use only and is provided in good faith without any express or implied warranty. There is no guarantee given as to the accuracy or currency of any individual items. The document does not accept responsibility for any loss or damage occasioned by use of the information contained and acknowledges credit of author(s) where ever due. While the document makes every effort to ensure the availability and integrity of its resources, it cannot guarantee that these will always be available, and/or free of any defects, including viruses. Users should take this into account when accessing the resources. All access and use is at the risk of the user and owner reserves that right to control or deny access.

Information, notes, models, graph etc. provided about subjects, topics, units, courses and any other similar arrangements for course/paper, are an expression to facilitate ease of learning and dissemination of views/personal understanding and as such they are not to be taken as a firm offer or undertaking. The document reserves the right to discontinue or vary such subjects, topic, units, courses, or arrangements at any time without notice and to impose limitations on accessibility in any course.

Point Load

Starting Interface -

Idea: Starting with cantelever Design a beam Leave the second side free of the beam

COMSOL: MEMS Notes – Akshansh Chaudhary

Select Study Type		¢	⇔ ø		<u>∧</u> ⊕ (
Studies			_ [T	
⊿ 🎬 Preset Studies				1	
📊 Eigenfrequency			ΗI	n	Ish
🗰 Frequency Domain			• •		
🗰 Frequency-Domain Modal					
S Linear Buckling	<u>т</u>				
🟡 Modal Reduced Order Model	т				
🔤 Prestressed Analysis, Frequency Domain					
C Stationary					
🕰 Time Dependent					
🕰 Time-Dependent Modal					
Custom Studies					
Selected physics					

Next, select the measurement unit and other dimensions as given

Lengar ana	
μm	-
Angular unit:	
Degrees	•
▼ Advanced	
Geometry representation:	
CAD Import Module kernel	•
Default relative repair tolerance:	
1.0E-6	
Automatic rebuild:	
On	•

COMSOL: MEMS Notes – Akshansh Chaudhary

Type: Solid					
▼ Size a	nd Shape				
Width:	20	μ m			
Depth:	100	μm			
Height:	5	μ m			
▼ Position					
Base:	Corner	•			
x: ()	μm			
y: ()	μm			
z: ()	μ m			
▼ Axis					
Axis typ	e: Cartesian	•			
x:	0				
y:	0				
Z:	1				
▼ Rotat	▼ Rotation Angle				

x: 10	μπ
y: 1	μπ
2: 5	μπ
Selections of Resulting Entities	
Create selections	

Form a union	

4	Ma	Form U terials	nion (fin)
	⊳ 🕸	*	Material
⊿	🖶 Sol	i 🄹	Open Material Browser
		2	Help

Material Library

	⊿		Eleme	nts	
			🕮 Co	nner	
	\triangleright	111	Polym	+	Add Material to Model
	\triangleright	11	Metal	-	Pamova Salacted
\triangleright	1	Bu	ilt-In	100	Remove Selected
N		۵C	'/DC		

Now, rotate the model and select one of the sides of length 5. Next, click on + button on the toolbox at the side.

Point Selection			
Selection: Man	ual		-
5			∾ + 43 = 10 ▲ 0
Override and	Contribution		
Equation			
 Coordinate Sy 	stem Selection		
Coordinate syste	em:		
Global coordina	ate system		•
 Force 			
Point load:			
F _P User defined	d		-
0		x	
0		у	N

Comsol a MultiPhysics
100
Now, putting load
in z direction
We need to put on -z axis
so, put -10e-6 (so that force
goes down)
Messages 🛛 💶 Progress 🕮 Log
COMSOL 4.3.1.115

This makes the diagram colored

A strip tells the amount of stress and the details on that.

Which figure has the max stress - we get to know from the figure

We find that the free end has maximum displacement

Note:

We can know the properties of material we are using. Here we are using copper. So, click on it to see its properties.

Save the file.

Boundary LOAD

🀑 B	lock1((blk1) z: 5	
s≪ F ⊿ 🏶 Mati ⊳ 🏶 0		Build Selected Build Preceding	F7
⊿ 🚔 Solic ề⊇ L ề⊋ F ề⊐ T	∲ ⊊ €1	Move Up Copy Duplicate	Ctrl+Up
	×	Delete	Delete
@ F	0	Disable	F3
- 100 ∰ Mes	×	Rename	F2
T and the study I	E.	Properties	

→ → Fixed Cor → Point Loa	nstraint ad 1	1 Equation		
🛞 Mesh 1	• 🕀	Phase		
Study 1		Hamaania Darturkatian		
🔀 Step 1: Statio		narmonic Perturbation		
Solver Confi		Load Group		_
⊿ 📩 Solver1	♠	Move Up	Ctrl+Up	
_{विं} द्ध Com			currep.	
⊳ ^{u,v,w} Depe	L 🈓	Сору		
> 🔭 Statio	Ð	Duplicate		
Results	×	Delete	Delete	-
Data Sets	0	Disable	F3	
e-12 Derived Valu	×	Rename	F2	
Stress (solid)		Properties		
		11-1-	1	

Boundary Selection	
Selection: Manual	2. Click +
	0
Override and Contribution	1 Select this
Equation	
▼ Coordinate System Selection	
Coordinate system:	
Global coordinate system 👻	
▼ Force	
Load type:	y - x
Load defined as force per unit area	
Load:	

COMSOL: MEMS Notes – Akshansh Chaudhary

	T D D Surface Model Library 🕸 Material Browser						
(✓ Plot Click on plot ▼ Data						
	Data set:	From parent	•				
	▼ Expression ♣ - ♥						
	Expression:						
lid)	solid.disp						
teria	Unit:	Unit:					
	µm 👻						
1	Description:						
	Total displacement						
=	– Parameters						
	Name	Value	Description				
15	solid.refpntx	0	Reference point for moment comput				
atio	solid.refpnty	0	Reference point for moment comput				
aria	solid.refpntz	0	Reference point for moment comput				

The total displacement is, as shown in the diagram.

By observation, it is lesser, as compared to point load.

Save the file again.

 Fixed Bour Mesh1 Study1 Study1 Story Solver C Step 1: S New Solver C Step 1: S New Solver C Step 1: S Solver C Solver C Step 1: S Solver C Solver C Step 1: S Solver C S	To get done i brief Report Intermediate Report Complete Report Custom Report Rename Properties Help	t the details of a n a file, go to F Intermediate, C what is require ^{F2}	all the work REPORT, th complete, do d.	Pending
Preview Se	lected Freview All	2 Write	2	
▼ Format				
Output form	nat:	HTML	•	
🔽 Open in l	browser			
Optimize	for printing			
Style sheet:		Default	-	
Generate co	narate files at section levels	None		
	surace mes at section revel.		•	
Report filena	ime:	From model		
Report direc	tory:	C:\ My System\@C	Browse	
Enumerate s	ections to level:	Level 3	•	
▼ Images				
Size: Medi	ium		-	
	um		•	
Type: PNG			•	
🔲 Disable ir	nage generation			

Changes

Now,

Change 1

Changing the values in geometry and seeing the deflection in that case.

COMSOL: MEMS Notes – Akshansh Chaudhary

Change 2

Now, change the thickness (height) of the model and for small values, check which is the smallest value, giving the maximum deflection and is able to tolerate as well.

COMSOL: MEMS Notes – Akshansh Chaudhary

EXTRA

Displaying moving details of how the figure was getting modified

Joule Heating Method for Actuator

We want to see how the temperature varies in our work piece when it is made as per the specifications.

Idea :

S1) Make a 3d Figure. For that, make a workplane under geometry tab. Then, add rectangles as per the dimension. Next, go to Work plane option and click on Extrude. That makes it 3D.

S2) Add Material. Go to Material library and select Poly-Si.

- MEMS>Semiconductor>Poly-Si
- S3) Select Joule Heating in Physics.
 - Model 1 Right Click> Add Physics
 - Heat Transfer> Electromagnetic Heating> Joule Heating (jh)
- S4) Now, start adding the properties to the work piece.
- S5) Do meshing of the object
- S6) Compute

Objective - To model Joule heating of a micro actuator using COMSOL Joule heating module

_	Select Space Dimension 🛛 🗢 🔄 🖉
	◎ 3D
	🖰 20 axisymmetric
	◎ 2D
	ID axisymmetric
	◎ 1D +
	© 0D

Scale values when chai	nging units
Length unit:	
μm	
Angular unit:	
Degrees	•
Advanced Geometry representation:	
CAD Import Module kern	al –
Default relative repair tole	rance:
1.0E-6	
Automatic rebuild:	

COMSOL: MEMS Notes - Akshansh Chaudhary

· object type	
Type: Solid	•
▼ Size	
Width: 100	μm
Height: 10	μm
▼ Position	
Base: Corner	•
xw: -50	μm
yw: 0	μm
▼ Rotation Angle	
Rotation: 0	deg
Layers	

		_			
▼ Object Type					
Type:	Solid	•			
▼ Size	▼ Size				
Width:	20	μ m			
Height	10	μm			
▼ Position					
Base:	Corner -	·			
Base:	Corner - -50	· μm			
Base: xw: yw:	Corner • -50 10	μm μm			
Base: xw: yw: • Rota	Corner - -50 10 tion Angle	μm μm			
Base: xw: yw: Rotatio	Corner -50 10 tion Angle n: 0	μm μm deg			

Size		
Size		
Width:	100	μm
Height:	10	μm
Posit	ion	
Base:	Corner	•
xw:	-50	μm
yw:	20	μm
Rota	tion Angle	
Rotatio	n: 0	deg
laver	5	

Then, go to Union and click Buld all. Next, Extrude the 2D image we made.

 ▷ ⋈ View ▷ Krtude ▷ Krtude ▷ Rotate 1 Ø Form Ut Ø Materials ♥ Poly-Si ○ Noule Heating 	a* a* 0* €	Initial Values Heat Transfer Electric Currents Boundary Electromagnetic Heat Source Periodic Condition	۲ ۲		
Joule H	-3	Heat Transfer	+	*@	Temperature
🙄 Electron		Electric Currents	•	*@	Thermal Insulation
🔭 Bounda		Pairs	+	*@	Outflow
ि∰ Electric ि∰ Therma P⊐ Initial Vi		Edges	×	*@	Symmetry Convective Cooling
@ Heat Flu		Points	~~~	d a	Heat Flux
@ Electric	48 48	Sort by Space Dimension	í l	*@	Surface-to-Ambient Radiation
Convect	×	Delete	Delete	• @	Open Boundary
Convection Temper	0	Disable	F3	*@	Inflow Heat Flux
Mesh 1	2	Disable Disable	15	*@	Boundary Heat Source
▲ ² Study 1	< XI	Kename	F2	*@	Electrochemical Reaction Heat Flux
- •••••	F	Properties		•@	Reaction Heat Flux

► Equ	uation	
▼ He	at Flux	
🖲 🙆	eneral inward heat flux	
90	0.04	W/m ²
⊚ In q ₀	ward heat flux =h·(T _{ext} -T)	
© To	otal heat flux	

٨

+ 123

Parametric Sweep

* 🖍 Ontimization

Analysis of Circular diaphragm in micro pressure sensor and find the deflection

We have to make a disk (or a thin cylinder) Now, apply pressure at its top and analyze the figure we get.

Initial steps - 3D > Solid Mechanics (solid) > Stationary

Select cylinder in Geometry and take the following dimensions -

Untitled.mph (root)		
Global Definitions	• Object Type	
🚺 Model 1 (mod1)	Type: Solid 🗸	
Definitions		
A Geometry 1	✓ Size and Shape	
Cylinder 1 (cyl1)	Radius: 100 µm	
Form Union (4m)	10 III	
Sector Materials	Height: 10	
Poly-Si (mat1)	▼ Position	
Solid Mechanics (solid)		
Linear Elastic Material 1	x: 0 μm	
💮 Free 1		
🙄 Initial Values 1	y: 0	
Fixed Constraint 1	z: 0 μm	
@ Boundary Load 1		10
🚱 Mesh 1	▼ Axis	
🎬 Study 1	Avie huner a suie	100
C Step 1: Stationary	Axis type. 2-axis	
Solver Configurations		
🛅 Results	 Kotation Angle 	
Data Sets	Rotation: 0 deg	
8.85 e-12 Derived Values		
Tables	► Layers	
🛅 Stress (solid)	- Coloritors of Developer Codular	
🛅 Surface 1	 Selections of Resulting Entities 	
隨 Export	Create selections	100 00
🔣 Reports		-10400
		7

Now, Select the material -Poly-Si

Next, Click on Solid Mechanics. Right click and add -Fixed Constraint.

Now, once the base is set, we need to add load over the top or bottom. For that use Boundary load option.

🕼 Boundary Load 🔪 🎹 Model Library 🖤 Material Browser	🖳 🗠 Messages 🔤 Progress 🔝 Log 🚺 Graphics 🖉 Kesults 🖓 External Process
	∞ ∞ ଫ 🗑 ▼ Q, Q, ⊕, ‡ ∯ ↓ ▼ ⊻ ⊻ ⊻ @ ☆ ⊖ 🞯 ଡ @ ♥ 🗆 🔲
Boundary Selection	â .
Selection: Manual	
4 3	Now, add 2M Pa to the z axis (2e6) as
Ē 4	shown.
يغ. يغ.	Then, add the top side to indicate the place
Override and Contribution	where load will be applied.
► Equation	10
▼ Coordinate System Selection	
Coordinate system:	
Global coordinate system	
▼ Force	
Load type:	
Load defined as force per unit area	
Load:	
FA User defined	
0 x	-10400
2e6 y N/m	ý Jex

Next, go to Mesh and Build All.

Finally, Study 1 > Compute.

Now, to see the total displacement, Stress> Surface

Then, Click on Plot.

Similarly, the dimensions of the disk can be changed and we can see for different values. Done!

Making a Capacitor

11

 3D 2D axisymmetric 2D 1D axisymmetric 1D 0D 		
 2D axisymmetric 2D 1D axisymmetric 1D 0D 		
 2D 1D axisymmetric 1D 0D 		
 1D axisymmetric 1D 0D 		
© 1D ◎ 0D		
© 0D		
 Radio Frequency Structural Mechanics Solid Mechanics (solid) Thermal Stress (ts) Thermoelasticity (te) Poroelasticity (poro) Shell (shell) 		
Modal Reduced Order H Prestressed Analysis, E Prestressed Analysis, F Stationary L Time Dependent Custom Studies		

Scale values when changing units
Length unit:
μm
Angular unit:
Degrees
✓ Advanced

COMSOL: MEMS Notes – Akshansh Chaudhary

COMSOL: MEMS Notes – Akshansh Chaudhary

COMSOL: MEMS Notes – Akshansh Chaudhary

Select Study Type	🗢 🔿
- Studies	
a 🎬 Preset Studies	
Ligenfrequency	
1000 Frequency Domain	
🗰 Frequency-Domain Modal	
S Linear Buckling	
💁 Modal Reduced Order Model	
🖮 Prestressed Analysis, Frequency Domain	
C Stationary	
💁 Time Dependent	
💁 Time-Dependent Modal	
Custom Studies	

	M Plot	🖳 @ Q 🕀 🕀 🗸	• • 🔤 📴 🖾 💽 🗀 📾	
Form Union (fin)	🔻 Data		Surface: von Mises stress (N/m²)	Comsol 🐖
▲ Staterials				MULTIPHYSICS' 🐲
Air (mat1) Belv-Si (mat2)	Data set: From parent			▲ 0
Solid Mechanics (solid)				
🙄 Linear Elastic Material 1	* Expression	N	_	
Bar Free 1	Expression:	Definition	<u>+</u>	
E Initial Values 1	solid.mises	Electrostatics +	Currents and charge 🔹 🕨 📉	
Electrostatics (es) Charge Conservation 1	Unit	Solid Mechanics	Electric	
Part Zero Charge 1	N/mA2	Geometry and Mesh	Energy and power	Electric energy density (es.We)
Initial Values 1		30	Global +	Energy density (es.W)
@ Ground 1	Description:		Material properties	Total electric energy (es.intWe)
② Electric Potential 1	von Mises stress		Mechanical	
S Mesh 1	Parameters	04	Normal vector (Spatial)	
A Study I	- I didiricters			
Solver Configurations	Name Value Description			
a 🎬 Study 3	solid.refpnty 0 Reference point for moment c.			
Step 1: Stationary	solid.refenty 0 Reference point for moment c.	•		
Solver Configurations	solid efpntz 0 Reference point for moment c.	•		
A C Results				
Data Sets 885 Derived Valuer	Title		0.0	
Tables	→ Range			
🔺 🛅 Stress (solid)	- Calarian and State			
D Surface 1	Coloring and Style	Z Z		
Stress (solid) 1	Coloring: Color table	• ^y ×		
Electric potential	Color table: Rainbow	-		-
Multislice	Color legend			• 0

Microgripper

Prestressed Analysis, Eigenfrequency
 Prestressed Analysis, Frequency Dom;
 Stationary
 Time Dependent
 Time-Dependent Modal

· · ·	
Type: Solid	
▼ Size and Shape	
Width: 20	μm
Depth: 100	μm
Height: 2	μm
▼ Position	
Base: Corner 🔹	8
x: 0	μm
y: 0	μm
z: 0	µm
▼ Axis	
Axis type: z-axis	
- Potation Angle	
Kotation Angle	20
Rotation: 0	leg 0 0
► Layers	
✓ Selections of Resulting Entities	
Create selections	y z x

▼ Object Type	
Type: Solid	
▼ Size and Shape	
Width: 20	μm
Depth: 100	μm
Height: 2	μm
▼ Position	4
Base: Corner 🗸	
x: 0 /	μm 100
y: 0 /	µm
z: 2	µm line line line line line line line line
▼ Axis	
Axis type: z-axis	•
× Rotation Angle	
Potation III 0	deg20
	0 0
Layers	
 Selections of Resulting Entities 	z
Create selections	y t x

COMSOL: MEMS Notes - Akshansh Chaudhary

COMSOL: MEMS Notes – Akshansh Chaudhary

Note: Force also has to be given only at the top and bottom. Not in the middle.

Selection: Manual	
7 8 9 10 11 13 14 16 • • • •	2
Override and Contribution	100
Equation	
▼ Coordinate System Selection	
Coordinate system:	
Global coordinate system	
Siobar coordinate system	
▼ Force	Apply Boundary
Load type:	load at all surfaces
Load defined as force per unit area	except the center (air part)
Load:	
FA User defined 🔹	20
es.nTx_Fes x	
es.nTy_Fes y N/m ²	z o o
es.nTz_Fes z	y x → x

User defined		
es.nTx_Fes	x	
es.nTy_Fes	У	N/m
es.nTz_Fes	z	

In Force calculation, the force has to be added in the specified part:

MICROGRIPPER: Scale Changing

Micro gripper was used in Micro scale.

Now, change it to different scales and measure the difference in deflection. We see that the only change needs to be done in the scaling factor. The scaling needs to be increased to see the same effect of gripping.

Original Scale : um

Case 1: Changing scale to mm

Case 2:

Changing the scale to cm

	X component:		▲ 6.	0617×1 ×10 ⁻¹⁵
	u			60
	Y component:			
	v			
	Z component:			50
11				
	Description:			
	Displacement field (Material)			
	> Title			40
	* Scale			
	- Start			
	Scale factor: 12 4e13			-30
				\sim
	On changing from mm to cm,		0	20
	scaling factor was changed from			
	4e12 to 4e13.			
	Note that the amount of scaling			10
	can vary. Do it as per the			
	requirement to observe the effect	at.		
		yx		
			v 0	. 0

COMSOL: MEMS Notes – Akshansh Chaudhary

Case 3: Changing scale to inch

Note: Displacement is independent of scaling.

OBSERVATION 1:

Constant:

• Material - Si (c)

Table 1: Shows the amount of scaling that needs to be done in order to get the gripping action at the corner.

Dimension	Scaling	Displacement (m)
Mm	4e12	6.0617*10^-13
Cm	4e13	6.0614*10^-14
In	9e13	2.3865*10^-14

OBSERVATION 2:

Now, keeping um as standard displacement, changing the values of voltage to get the same displacement at other scales.

Constant:

•

- Material: Silicon
 - Reference um
 - Scaling 4e9
 - Displacement 6.0617*10^-10 m

Table 2: Shows the value of the voltage for each scale, giving the same displacement as in micrometer scale.

Dimension	Displacement (m)	Voltage value (V)
Mm	6.0617*10^-13	5
	6.0617*10^-11	50
	1.3639*10^-10	75
	<mark>6.053*10^-10</mark>	<mark>158</mark>
Cm	6.0614*10^-14	5
	6.0617*10^-12	50
	5.455*10^-11	150
	<mark>6.0617*10^-10</mark>	<mark>500</mark>
In	2.3865*10^-14	5
	9.546*10^-12	100
	8.5914*10^-11	300
	<mark>6.03333*10^-10</mark>	<mark>795</mark>

OBSERVATION 3:

Now changing the material of the micro gripper and observing the displacement. Constant:

- Dimension: um
- Middle layer: Air

Table 3: Shows the displacement of the micro gripper with different materials.

Material	Displacement (m)
Si (c)	6.0617*10^-10
Poly-Si	5.1787*10^-10
Glass (quartz)	1.0616*10^-9
GaAs	1.189*10^-9
SiO2	1.1665*10^-9

Scaling Problem: We have a cylinder (tube) and fluid flowing through it. Now, when the dimensions of the tube is changed, note the pressure drop.

AC/DC Macoustics Chemical Species Transport Electrochemistry Fluid Flow Single-Phase Flow Laminar Flow (spf) Turbulent Flow Creeping Flow (spf) Rotating Machinery, Fluid Flow Pipe Flow (pfl) Water Hammer (whtd) Thin-Film Flow Multiphase Flow Porous Media and Subsurface Flow	THE SECOND SECOND
 Preset Studies Stationary Time Dependent Custom Studies 	
Length unit:	
Angular unit:	
Degrees 🔹	

20

Type: Surface		•	~				
 Size and Shape 							
Radius: 10 Height: 100		μm μm			Choose surface option (instead of Solid) Next, click on LAYER option and choose thicknesss of the surface.		
▼ Position					Finally, we make another solid cylinder inside it.		
х: О		μ m					
у: 0		μm					
z: 0		μm			-10		
▼ Axis			=		A A A A A A A A A A A A A A A A A A A		
Axis type: z-axis		•			10		
▼ Rotation Angle							
Rotation: 0 deg				-10			
▼ Layers					0		
Layer name	Thickness (µm)				100		
Layer 1	5						
Layer 2							
					v		
					1		
Layers on side					×		
cayers on pottom			Ψ.				

Surface option. (instead of Solid)

▼ Size and Shape					Comsol 🕡 Multiphysics
Radius: 5		μm			
Height: 100		μm		0 del en este en endire de númeriale (a ser els en en	
▼ Position				Add another cylinder inside it, as shown.	
х: 0		μm			
у: 0		μm			
z: 0		μm		-10	
▼ Axis			=		
Axis type: z-axis		•	-	10	
Rotation Angle					
Rotation: 0		dea			
				0 ¹⁰	
• Layers					
Layer name	Thickness (µm)			100	
Layer 1					
🚯 🦶 🔁				× V	
📝 Layers on side				2	
Layers on bottom			÷	x	

Scaling Laminar Flow (8.4.2014).mph (root)	•	Boundary Selection	^	<u> </u>
Global Definitions				
Model 1 (mod 1)		Selection: Manual		Comsol 🔞 Multiphysics 🕲
Definitions		10		Under Laminar Flow, choose the inlet layer.
Geometry 1				Then, add one side as inlet.
Cylinder 1 (cyl2)		112 高 1		Give the conditions of Laminar Inflow in Boundary Condition with
Eorm Union (fin)				the eliver veloce
A Staterials		-19th		the given values.
Water (mat2)				
Poly-Si (mat3)				
Laminar Flow (spf)	Ξ	Override and Contribution		10,
E Fluid Properties 1				10010
🗁 Wall 1		Equation		100
P Initial Values 1		Boundary Condition	_	
🔄 🞯 Inlet 1			-	
@ Outlet 1		Boundary condition:		10
Mesh 1		Laminar inflow		
a 🎬 Study 1				
Step 1: Stationary				
Solver Configurations		▼ Laminar Inflow		
⊿ 🔛 Solver1		Average velocity		
ata Compile Equations: Stationary		Claw rate		
Stationary Solver 1				
Results		Chuance pressure		
Data Sets		Average velocity:	4	
8.85 e-12 Derived Values		U _{av} 0.0015 m/s		x
Tables		Entrance length:		
Velocity (spf)				Lazy
💓 Slice 1	Ŧ	Lentr 0	Ŧ	
Model 1 (mod1)		Selection: Manual	-	
Definitions				MULTIP
A Geometry 1		<u>n</u>	t	
Cylinder 1 (cyl1)			-	
Cylinder 2 (cyl2)		l h	Å.	
Form Union (fin)				Similarly, add Outlet to the other side of inlet.
Materials		1997 - 19		
🛚 🚔 Water (mat2)				
Poly-Si (mat3)				
Laminar Flow (spf)	ll r	Override and Contribution		010
Pa Fluid Properties 1				-10
Wall 1		Equation		10
Contract Values 1	ll r	- Roundary Condition		
Inlet 1		Boundary Condition		100
Outlet 1		Boundary condition:		
Moch 1		Laurines autiliau	-	
Study 1		Laminar outriow	·	
T Step 1: Stationary				
Solver Configurations				
a 😰 Solver 1		Flow rate		
aug Compile Equations: Stationary		Exit pressure		
> www Dependent Variables 1		Average velocity:		
Stationary Solver 1		// 0.0015 m/	-	
) Results		~ av 0.0012	3	
Data Sets		Exit length:		₩¥
8.85 e-12 Derived Values	1	L _{exit} 0.1 m		×
Tables	1			
Telocity (spf)		Constrain outer edges to zero	-	y 🚽
Slice 1 🗸 🗸	1			2*

Note: In case you get the error saying, "Error: Maximum number of Newtonian Iterations reached" change the mesh amount from NORMAL TO EXTREMEMLY COARSE. Element size:

Extremely coarse 🔹
Extremely fine
Extra fine
Finer
Fine
Normal
Coarse
Coarser
Extra coarse
Extremely coarse 📕

Radius is 5um

On changing the dimensions to 10um and 20um, we have this pressure. (it decreases, as expected) Radius is doubled (10um now) So, by formula, Pressure is inversely proportional to the square of radius.

So, as radius is doubled, pressure is becoming 1/4 times.

20

<mark>MICRO MIXER</mark>

Model - 3D Physics - Laminar Flow Property - Stationary

Make the model.

🔻 Obj	ect Type		
Туре:	Solid	•	
▼ Size	and Shape		
Width	: 100	μm	
Depth	: 10	μm	
Heigh	t: 5	μm	
▼ Posi	tion		
Base:	Corner 🗸]	
x:	0	μm	
y:	0	μm	
Z:	0	μm	
▼ Axis			
Axis ty	rpe: z-axis	•	
* Rot	ation Angle		010
Rotati		dea	0 0
h. Law		ucy	
▶ Laye	PTS		
▼ Sele	ections of Resulting Entities		
Cre	ate selections		y z x
			¥

Boundary Selection	
Selection: Manual	Add other two sides as Outlet and give pressure as 0 Pa
 ▶ Override and Contribution ▶ Equation ▼ Boundary Condition Boundary condition: Pressure, no viscous stress ▼ Pressure: Po 0 Pa 	

0

Inlet 1 (2m/s)

y z×

Outlets

5 100

4

3

2

1

0

• 0

ONLY CREEPING FLOW

COMSOL: MEMS Notes – Akshansh Chaudhary

ONE FLOW LAMINAR, ONE FLOW CREEPING

USING TWO FLUIDS, WATER AND ETHANOL

