ELECTRONIC DEVICES NOTES

AKSHANSH.CHAUDHARY

Electronic Devices Notes, First Edition

Copyright © 2013 Akshansh

ALL RIGHTS RESERVED.

Presented by:	Akshansh Chaudhary Graduate of BITS Pilani, Dubai Campus Batch of 2011
Course content by:	Dr. Jagadish Nayak Then Faculty, BITS Pilani, Dubai Campus
AC Creations © 2013	

The course content was prepared during Fall, 2012.
More content available at: www.Akshansh.weebly.com

DISCLAIMER: While the document has attempted to make the information as accurate as possible, the information on this document is for personal and/or educational use only and is provided in good faith without any express or implied warranty. There is no guarantee given as to the accuracy or currency of any individual items. The document does not accept responsibility for any loss or damage occasioned by use of the information contained and acknowledges credit of author(s) where ever due. While the document makes every effort to ensure the availability and integrity of its resources, it cannot guarantee that these will always be available, and/or free of any defects, including viruses. Users should take this into account when accessing the resources. All access and use is at the risk of the user and owner reserves that right to control or deny access.
Information, notes, models, graph etc. provided about subjects, topics, units, courses and any other similar arrangements for course/paper, are an expression to facilitate ease of learning and dissemination of views/personal understanding and as such they are not to be taken as a firm offer or undertaking. The document reserves the right to discontinue or vary such subjects, topic, units, courses, or arrangements at any time without notice and to impose limitations on accessibility in any course.

Semiconductor
\rightarrow Conductivity varies with Temp., optical exciton \& impluitit content
used foe electronic \& ortoclectronic s ns because of its variety of electronic \& optical properties.
Silicon better than Germanium
\rightarrow Stable, st strong material, crystal structure
\rightarrow less noisy (uifut in nt friar \rightarrow variafonscome
\rightarrow Higher operating temp $\left(125-175^{\circ} \mathrm{C}\right)$
\rightarrow Ge breaks achove $90^{\circ} \mathrm{C}$
\rightarrow Easily available
Compounds semiconductors (doped)
\leftrightarrows used for high-spued devices
\rightarrow devices requiting emission \& absorption of light.
I If \exists
$\rightarrow 2$ elemis: BINARY (GaN,
$\rightarrow 3$ elemi: TERNARY
$\rightarrow 4$ elemto : QUATERNARY

* InS semiconductor: used for fluoroscent material
\& In Sb, Cd Se or Pb Te \& HgCdTe: Light detectors.
* Si\& Ge. Infrared \& nuclear radiation detectors
* GaAs Cor In P: Moroware devices like Guan Diode.

Afoduce high 2 oscillations

* Gait, AlGa As \& other ternary \& quaternary compels:- Semiconductor lases.
* Semiconductor diff t from metal \& insulator

$$
\begin{aligned}
& \rightarrow \text { Energy leand gap. } \\
& \text { eq } \rightarrow 4 \text { IAs }=43 \mathrm{eV}(\lambda \text { near infra red } \\
& \rightarrow \text { Energy band gap } \\
& \rightarrow 0 \quad \text { in conductor }
\end{aligned}
$$

$$
\left[\begin{array}{ll}
\rightarrow 0 & \text { : conductor } \\
\rightarrow \text { small } & \text { semiconduc } \\
\rightarrow \infty \text { (very large.): insulator. }
\end{array}\right.
$$

* Polycrystalline solids: have many small regions of
crystalline materials. vystaline materials.

* Lattice. Periodic Array of pts. in space.
* Basis: Atoms os groups of atoms in each latin Crystal structure = Lattice + Basis.
* Unit cell: Smallest volume that repeats itself
* A virinitive ell has lattice ply. f only in the comers. .ene effective no. of lattice pts is always UNITY (\because one lattice pt can make vector connecting other latte pts. to make a unit all)
*3D lattices can ha generated with 3 basis
* Unit all of a general 3D Lattice is described by 6 nos. (need not be independent):
$\triangleright 3$ distances $(a, b ; c)$

$$
\triangleright 3 \text { angles }(\alpha, \beta, \gamma)
$$

CUBIC LATTICE

$$
\begin{aligned}
& \text { Simple clii }(S C) \text { Face Centered Body Centered } \\
& (F C C) \\
& (B C C)
\end{aligned}
$$

* Calculi of nearest neighbour distance

$$
\begin{aligned}
& =1 / 2 \text { of duagoshal of a face } \\
& =1 / 2(a \sqrt{2}) \\
& \left.=\frac{1}{2}[4 \times \text { (Radius of } a t o m)\right]
\end{aligned}
$$

* BCC: Nearest neighbour distance

$$
\begin{aligned}
& =\frac{1}{2} \times(\text { Diagonal of a cube }) \\
& =1 / 2 \times\left(\frac{\sqrt{3}}{a} a\right) \\
& =\frac{1}{2} \times(4 \times \text { Radius of atom })
\end{aligned}
$$

* Semiconductors are having Diamond structure.
\rightarrow FCC stricture.
\rightarrow One extra atom at $a / 4+\frac{b}{4}+\frac{C}{4}$ from each FCC atom
eg: BaAs (Zinc Blende)
*

$$
\text { PLANES } A / R^{m}
$$

* The planes are known as Miller Indices,
denoted bey $(h$ l k, denoted ley (k)
\rightarrow To find a plane:

1. Find intercepts of the plane along 3 axisin for indices integral multiple of basis vectors. with thane. 2 . Jake reciprocal of intercepts intercept $=\infty$. . Reduce to smallest set of integers. So r reciprocal 4 . Label the plane $(h k l)$
gives 0 .

* Dirn in a lattice is expressed as a set of $3 \mathbb{Z}\left[\begin{array}{lll}p & i\end{array}\right]$ hisng the componente of a vecter in that dirn
The 3 vector componento are expressed in multixies of leasis vectors, reduced to the smallest values with the same rel reshif.
* NTERPLANAR DISTANCE

Distance b/w adjacent vlanes is d or $d_{\text {thi }}$
is the interplanter distlance. is the interplantar distlance.
ONLY in a cublic sys, dis ${ }^{n}$ indices of a dis ${ }^{n}$ $\frac{1}{\text { Mifler a arsistal plane ase the same as it }}$ Meiller Indiels.
Coluulate interplanas destance

$$
d=d_{h k l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}
$$

* Angle θ b/w 2 difft milles indices (planes)

$$
\cos \theta=\frac{h_{1} h_{2}+k_{1} k_{2}+l_{1} l_{2}}{\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2} \sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}}}
$$

* EGS: Electronic Grade Silicon.
* BULK CRYSTAL GROWTH.
- Starting material $\left(\mathrm{SiO}_{2}\right)$
- Impurity reduced to 1 pps (parts per billion) to get EGS.

$$
\mathrm{Si}+3 \mathrm{HCl} \rightarrow \mathrm{SiHCl}_{3}+\mathrm{H}_{2} \uparrow
$$

- Extract SiHCl_{3} (trichlorosilane)
- SiHCl_{3} is converted to EGS or semiconduct in grade $\mathrm{Si} \rightarrow$ React with H_{2}.

$$
\mathrm{SiHCl}_{3}+2 \mathrm{H}_{2} \rightarrow \underset{(\text { pure })}{2 \mathrm{Si}^{2}}+6 \mathrm{HCl}(l)!
$$

* Palycrystallizin method of Si
\rightarrow Gat Czochralski Method.
\square Melted l held in Quartz.
\rightarrow Seed crystal put \& taken out slowly, by
\rightarrow Si, Ge, Gads are grown by this motion
* LEC Growth (Liquid Encapsulated Czochnalski) For volatile elemis, layer of $\mathrm{B}_{2} \mathrm{O}_{3}$ is floated on the surface of the melt io prevent evapor".
*

$D O P \| N G$
Done at solidifying interface b/w melt 2 soled.

$$
\begin{array}{r}
\text { Distilen } \operatorname{colff}\left(k_{d}\right)=\frac{l_{s}}{C_{l}} \rightarrow \text { conc of vinpurdy } \\
>\text { wren of impeindy } \\
\text { in liquid }
\end{array}
$$

ex for a BCC lattice of identical atoms with a lattice curation of $5 \AA$, calculate the max packing faction and the radius of the atoms treated as hard series with the nearest neighbours touching.

Nearest atoms are at a distance $=\frac{\sqrt{3}}{2} \times 5 \times 10^{-10} \mathrm{~m}$

$$
=433 \mathrm{X}
$$

Radius of atoms $=\frac{1}{2} \times$ Nearest righteous distance.

$$
h=\frac{1}{2} \times(4.33 \mathrm{~A})
$$

Volume of each atom $=\frac{4}{3} \pi R^{3}=42.5$

$$
\text { No. of atoms per cull }=1+\left(8 \times \frac{1}{8}\right)=2
$$

* If Miller Indices $=0 \Rightarrow$ Its 11 to other 2 abls $\left(\because \frac{1}{0}=\infty \Rightarrow 1\right.$ to that axis
Q. Calculate \%gge of sree space $(100-\phi)$ in $F C C$

$$
\text { Radies }(r)=\frac{1}{2}(a \sqrt{2})=\frac{a}{\sqrt{2}}
$$

$$
\text { Volume of each atom }=\frac{4}{3} \pi r^{3}=\frac{24}{3} \pi \frac{\left(a^{3}\right)}{z \sqrt{2}}
$$

$$
=\frac{2}{3 \sqrt{2}} \pi a^{3}
$$

$$
\text { No. a atoms }=\left(8 \times \frac{1}{8}\right)+6\left(\frac{1}{2}\right)=(4)
$$

$$
\left\{\begin{array}{l}
\phi=\frac{\sqrt{2}}{3} \pi \alpha^{3} \times 4 \\
\phi=\frac{4 \sqrt{2}}{3} \pi=5.92
\end{array}\right.
$$

Q Calculate meller indices of M lane shown.

	x	y	z
Interapts	$2 / 3$	-1	$1 / 2$
Reciproeal	$3 / 2$	-1	2
Reduction	3	-2	4
Muller Indices $(3$	$\overline{2}$	$4)$	

Q. Calculate of volume density of S atone (no. of atoms $/ \mathrm{mm}$. given that lattice constant of S_{i} is $5.43 \AA$. Calculate areal density of aloms (number $\left(\mathrm{cm}^{3}\right)$ on 11 O 11)plane $\triangle / A M O N D$ structure of $5 i \longrightarrow F C C$.
+4 atoms completely inside aulic all

$$
\begin{aligned}
& =4+8\left(\frac{1}{8}\right)+6\left(\frac{1}{2}\right)=8 \text { inside arms }
\end{aligned}
$$

$$
\text { Volume of coll }=(5.43 A)^{3}=1.6 \times 10^{-22} \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
& \text { Density }=\frac{8}{a^{3}}=\frac{8}{1.6 \times 10^{-22}}=5 \times 10^{22} \text { atoms } / \mathrm{cm}^{3} \\
& \text { 00) }
\end{aligned}
$$

$$
\begin{aligned}
\text { In }(100) \text { plane } & =\left(4 \times \frac{1}{4}\right)+\left(\frac{1}{7} \times{ }^{\left(\frac{1}{2}\right.}\right)=2 \text { atoms } \\
& =2
\end{aligned}
$$

$$
=\frac{2}{(5.43 \AA)^{2}}=6.8 \times 10^{14} \mathrm{~cm}^{-2}
$$

Q. A Sicsytal is to he grown by the Czochralski method \& its desired that the ingot contain 10^{16} (a) peshorous atoms/ cm^{3}
(a) What conc. of phosphorous atoms should the melt contain to gie this impurity concentration in the crystal during the initial growth? For P in $S i$,
$k_{d}=0.35$.
b) $k d=0.35$
(b) If the initial bad of Si in the sucilb is 5 kg , how many grams of P should be added. Atomic weight of $P=31$.
(a) $K_{d}=\frac{C_{s}}{C_{l}} \Rightarrow C_{l}=\frac{10^{16}}{0.35}$ shes

- EPITAXIAL GROWTH or EPITAXY Chemical vapor Molecular deposition (CVD) beam Epitany
* Heteropitaxy : In case of Esitasial Layer mismath.
* Any compd (nono, binary, ternary or quastenary) compd can le grown oves the othes : prasided. their Lattice Codest. mateh).
* If \exists a mismatich in lattice consth, we canchange Lattice wosett during Enitaxial growth
* Pseudomorphic: If \exists litte mismatich, compission or tension would he these. Thin
layers grown.
* Misfit distoc ${ }^{n s}$: If layer exceeds ertical thikiness.
* SLS: Sbrained-layer....

Quantum Mechanics:
- Quantum partiles can recct loth loy as pasiontictes \& s waves WAVE-PARTCLE duality.
Quantum mechanies uses Procaluelty theory.
* Heisenkerg's Uncertainty Princylo.

$$
(\Delta x)(\Delta p\rangle \geqslant \frac{h}{2} \quad ;(\Delta n)(\Delta p) \geqslant \frac{h}{4 \pi}
$$

$\because \exists$ uncertainty in energy \& time

$$
\begin{gathered}
(\Delta E)(\Delta t) \geqslant \frac{h}{2} ; h=6.625 \times 10^{-3 y} \mathrm{~J} \\
h=\frac{h}{2 \pi}
\end{gathered}
$$

* In ID : probeatulty of finding the pasticle in Eange, x to $(x+d x)$ is $P(x) d x$.
* P (particte is comewhere in the entice shace)

$$
\int_{-\infty}^{\infty} P(x) d x=1
$$

* $Y=$ Probalulify density. (a wavefunction) $\left|Y^{2}\right|=$ Prolealaility.
Postulate (1)
* Each partick in a shysical sys. is descrithod by a wave f' $(Y(x, y, z, t)$.
\&

$$
\begin{aligned}
& \nabla\rangle \text { should be } \\
& \longrightarrow \text { finite } \\
& \longrightarrow \text { Single valued } \\
& \longrightarrow \text { cts. }
\end{aligned}
$$

* BASIC POSTULATES

Postulate (2)
Classic variable
Quantum operator

$$
\begin{aligned}
& x \\
& \text { momentum, } p(x) \\
& \begin{array}{l}
x \\
f(x) \\
\frac{h}{j} \frac{\partial}{\partial x}
\end{array} \\
& E \\
& -\frac{\hbar}{j} \frac{\partial}{\partial t} \\
& ; h=\frac{h}{2 \pi}, j \text { : complex cons }
\end{aligned}
$$

Postulate (3)

* Prolealicity of finding a particle with waved Y in volume $d x d y d z$ is $Y^{*} Y d x d y d z$ Normalizn and 'of waved:-

$$
\int_{-\infty}^{\infty} Y^{*} Y d x d y d z=1
$$

4 We can find only avg. values of these physical quantities.

These avg. values, called EXPECTATION VALUES \Rightarrow \& Loss an operator Gop its.

$$
\int_{-\infty}^{\infty} Q_{o p} Y^{\mathbb{E}^{*}} \psi d x d y d z
$$

\& SCHROEDINGER EQ n.

$$
\begin{gathered}
K E+P E=\text { Total energy ie } \frac{p^{2}}{2 m}+V(x)=E \\
(\text { to Quantum }
\end{gathered}
$$

Ls: $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial^{2} x}+V(x) \psi(x, t)=-\frac{\hbar}{j} \frac{\partial}{\partial t} \Psi(x, t)$
30: $-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V Y=-\frac{\hbar}{j} \frac{\partial \psi}{\partial t}$

$$
\begin{aligned}
& Y_{(x, t)}=\psi_{(x)} \phi(t) \\
& \zeta-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial^{2} x} \psi(x) \phi(t)+V(x) \psi_{(x)} \phi(t)
\end{aligned}
$$

$$
\frac{d \Phi(t)}{d t}+\frac{1 E}{\hbar} \phi(t)<0 \quad \frac{d^{2} \psi(x)}{d x^{2}}+\frac{2 m}{\hbar^{2}}[E-V(x)] Y(x) 20
$$

* For particle in a leos sys,

$$
\begin{aligned}
E(o r V) & =0, & 0<x<L \\
& \rightarrow \infty & , x=0 \& x=L
\end{aligned}
$$

So, b/w O\&L, eq changes to

$$
\begin{aligned}
& \frac{\partial^{2} y(x)}{\partial x^{2}}+\frac{2 m}{\hbar^{2}} E Y(x)=0 \\
& \Rightarrow \frac{\partial^{2} y}{\partial x^{2}}(x)=-\frac{2 m E}{\hbar^{2}} \nmid(x)
\end{aligned}
$$

Solving:-

$$
\begin{gathered}
\psi(x)=A \sin k x+B \cos k x . \\
\Rightarrow x=0 \& x=L, \psi(x)=0 \\
\Rightarrow \psi(0)=A \sin (0)+B \cos (0)=0 \\
\Rightarrow B=0
\end{gathered}
$$

$$
\Rightarrow \psi(x)=A \sin k x
$$

$$
\text { At } x=L
$$

$$
\Rightarrow \Psi(L)=A \sin K L=0
$$

$$
\Rightarrow k L=n \pi
$$

$$
\Rightarrow k=\frac{n \pi}{L} \text { or } k_{n}=\frac{n \pi}{L}
$$

$$
; n \in \mathbb{Z}
$$

So, $\left.Y(x)=A \sin \left[\frac{n \pi}{L}\right) \eta\right] ; n \in 1,2, \ldots$
\rightarrow Find A : Using normalization.

$$
\int_{0}^{L} \psi^{*}(x) \Psi(x)=A^{2} \frac{L}{2}=1
$$

Se $Y_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)$
\rightarrow Schrodinger eq" for particle well ox particle in a bows.
\&TUNNELING:
When KE of particle is smaller than the potential bassier in front of it, it still has some property of penetrate through barrier.
Note: This happens only when the bassies Note: This happens only when the lassies
potential is not infinite. \& $\frac{\Psi \neq 0 \text { at lassies }}{\Downarrow}$ $\psi / 2$ exists. So, 7 volubility of existence of pastiche ahead of boundary.

* SEMICONDUCTOR -QUESTIONS.
Q. Sketch an SC unit all with a lattice ion ct , $a=4 \AA$;
chose diatonic leasis of atom A is located at lattice sites, and with atom B displaced by $\left(\frac{a}{2}, 0,0\right)$. Assume that both room has same size and we have a closed packed structure Calculate:
(i) Packing fraction.
ii) No. of B atoms pu volume.
iii) No. of A atoms pu area on (100) plane,

for every sids that ils sc: for other unit cell e

$$
12: A
$$

$$
\therefore \therefore B
$$

$$
\rightarrow \text { Radii of } A \text { \& B }
$$

$$
\text { atom }=1 A
$$

$$
\left(\frac{4}{2 \times 2}\right)
$$

No. of A atoms $=\frac{1}{8} \times 8=1$
No. of B atoms $=\frac{1}{4} \times 4=1$
Volume of atoms $=1 \times \frac{4}{3} \pi r^{3}+1 \times \frac{4}{3} \pi^{4} r^{3}$

$$
=8.373 \times 10^{-30} \mathrm{~m}^{3}
$$

(a)

$$
\begin{aligned}
\text { Packing fraction }=\frac{\frac{8 \pi}{3} \times(A)^{3}}{a^{3}} & =\frac{\frac{8 \pi}{3} \times(A)^{3}}{64 \times(R)^{3}} \\
& =\frac{\pi}{24}=13.083 \%
\end{aligned}
$$

Packing fraction
(s) of 8 atoms

$$
\begin{aligned}
\beta \text { atoms } & =\frac{V_{0 l_{B}}^{T_{0 t a l}}}{} \\
& =\frac{\frac{4}{3} \pi A(\lambda)^{3} \times 1}{a^{3}} \\
& =\frac{14 \pi}{3 \times 64}=\frac{\pi}{48}=0.065
\end{aligned}
$$

(ii) $\frac{1}{64(A)^{3}}=1.56 \times 10^{+22} / \mathrm{cm}^{3}$
(iii)

$$
\frac{\frac{1}{8} \times 4}{16(A)^{3}}=7.125+14
$$

A crystal with a
Q SCC. a monoatomic basis has atonic radius of $2.5 \AA$ \& At wt 5.42 . Find ρ assuming atoms touch each other

$$
r=2.5 A \quad \rho=\frac{5.42}{\frac{4}{3} \pi r^{3}} \times 1=8.285 \times 10^{22}
$$

5.42 is $\mathrm{g} / \mathrm{mol}$. So, $\mathrm{g} /$ atom $=? ~=? .42 \times \mathrm{N}_{A}$

$$
=5.42 \times 6.022 \times 10^{23}
$$

$$
\begin{aligned}
\rho & =\frac{5.42 \times 6.022 \times 10^{23} \times(1)}{a^{3}} \times \frac{5.42 \times 6.02 .2 \times 10^{23}}{(2 \times 2.5)^{3} \times(A)^{3}} \\
& =2.611 \times 10^{22} \times 10^{24} \\
S & =2.611 \times 10^{46} \cdot \mathrm{~g} / \text { atom } .
\end{aligned}
$$

g/atom.

Q A Si crystal to to be grown using Gochralsis $\operatorname{mothod} \&$ ito desired that ingot contains 10^{16} phosphorous atoms $/ \mathrm{cm}^{3}$
(9) What cone of Patois should the melt contain to give this impurity cone in the crystal dissing instal growth? For P in $S_{1}, k_{d}=0.15$

$$
10^{16}<\frac{Q_{S}}{C_{2}}=k d \Rightarrow C_{L} \sigma=2.86 \times 10^{16}
$$

(b) If initial load of S_{i} in crucible is 5 kg , how many grams of P should be added?

$$
p \rightarrow a t w t=31 .
$$

Ans:- Given $S_{S i}=2.33 \mathrm{~g} / \mathrm{cm}^{3}$
P is very less in Volume $(\because 5 \mathrm{~kg} \mathrm{si})$. So z can he neglected.

$$
\begin{aligned}
& \text { (Volume) }=\frac{\dot{m}_{\text {melt }}}{\rho_{s i}}=\frac{5000}{2.33}=2146 \mathrm{~cm}^{3} \text { of } \mathrm{S} \\
& \begin{aligned}
\&[\text { No. of tans } & =\text { cons } \times \text { vol] } \\
(N) & =2.86 \times 10^{16} \times 2146=\frac{6.14 \times 10^{19}}{\text { atoms. }}
\end{aligned} \\
& \text { So, ant. of } p \mathrm{seq}^{d}=\frac{N_{\times M}}{N_{A}}=\frac{6.14 \times 10^{19} \times 31}{6.022 \times 10^{23}} \\
& =3.16 \times 10^{-3} \mathrm{~g}
\end{aligned}
$$

Drawing s lane with Miller Indices. \qquad

(1) A S_{i} crystal is to be pulled from the molt k doped with As $\left(K_{d}=0.3\right)$. If S_{i} weighs 1 kg , how many grams of As should be introduced to achieve $10^{15} \mathrm{~cm}^{-3}$ dosing during initial growth,

$$
\begin{aligned}
x \frac{C_{S}}{C_{L}}=k_{d} & =\frac{10^{15}}{0.3}=C_{L} \cdot\binom{\text { Gwen }}{A_{S}} \\
& \left.=34.33 \times 10^{15} . \quad \simeq 7 \mathrm{md}\right) \\
\text { Votive } & =\frac{1000}{2.33}=429.184 \mathrm{~cm}^{3}
\end{aligned}
$$

No. of atoms $=3.33 \times 10^{15} \times 429.184$ atoms.

$$
\text { amit of } A S=\frac{3.33 \times 10^{15} \times 429.184}{6.022 \times 10^{23}} \times 75=\frac{1.78 \times 10^{-4}}{q}
$$

