MATHEMATICSII

FIZST YEAR NOTES

-AKSHANSH CHAUDHARY

Mathematics II Complex Number Notes, First Edition

Copyright © 2013 Akshansh

ALL RIGHTS RESERVED.

Presented by: Akshansh Chaudhary

Graduate of BITS Pilani, Dubai Campus

Batch of 2011

Course content by: Dr. K. Kumar

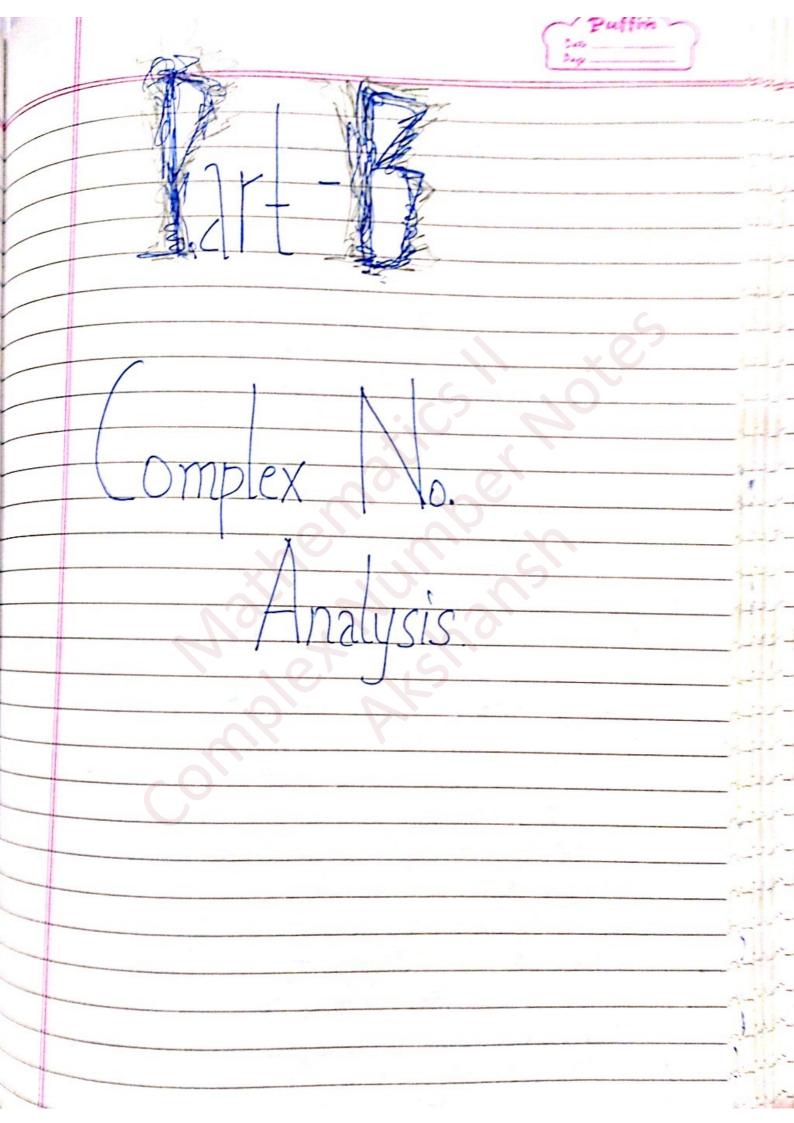
Then Faculty, BITS Pilani, Dubai Campus

Layout design by: AC Creations © 2013

The course content was prepared during Spring, 2012. More content available at: www.Akshansh.weebly.com

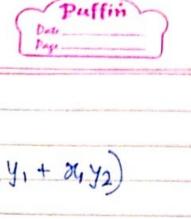
DISCLAIMER: While the document has attempted to make the information as accurate as possible, the information on this document is for personal and/or educational use only and is provided in good faith without any express or implied warranty. There is no guarantee given as to the accuracy or currency of any individual items. The document does not accept responsibility for any loss or damage occasioned by use of the information contained and acknowledges credit of author(s) where ever due. While the document makes every effort to ensure the availability and integrity of its resources, it cannot guarantee that these will always be available, and/or free of any defects, including viruses. Users should take this into account when accessing the resources. All access and use is at the risk of the user and owner reserves that right to control or deny access.

Information, notes, models, graph etc. provided about subjects, topics, units, courses and any other similar arrangements for course/paper, are an expression to facilitate ease of learning and dissemination of views/personal understanding and as such they are not to be taken as a firm offer or undertaking. The document reserves the right to discontinue or vary such subjects, topic, units, courses, or arrangements at any time without notice and to impose limitations on accessibility in any course.



Charter -1 Complex nos A decomplex no. I is a pt. (x, y) in the xy X-y plane (lomples plane or Z-plane) where $X \downarrow Y$ axis are referred to as real & imaginary axis resp. & we write Z = (n, y).

For any 2 complex nos. $Z_1 = (x_1, y_1) k$ we define the open of add " & multiplic" as, (1) $Z_1 + Z_2 = (x_1 + y_1) + (x_2, y_2)$ $= (x_1 + x_2, y_1 + y_2)$ (ii) $z_1 \cdot z_2 = (x_1, y_1) \cdot (x_2, y_2)$ = (21x2-4142, 2142+271) with these defines we write Z = (x,y) = (x,0) + (0,1)(y,0)Here, i = (0,1) is purely an imaginary no & me have i2 = (0,1) (0,1) = (-1,0) & hence, i2 = -1. => i = √-1. o o we have Z = x + ly



In this notation,

$$2_1 + 2_2 = (x_1 + x_2) + i(y_1 + y_2)$$

 $z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_2 y_1 + x_1 y_2)$

elso, x by are the real & imaginary parts of a complex no. Z = x + iy & we write

x = Re(z) y = Im(z).

PROPERTIES OF COMPLEX NOS.

$$Z_1 + Z_2 = Z_2 + Z_1$$

= $Z_1 \cdot Z_2 = Z_2 \cdot Z_1$; for any 2 complex. nos.
 $Z_1 \& Z_2$.

$$\frac{P_2(Z_1+Z_2)+Z_3=Z_1+(Z_2+Z_3)}{(Z_1Z_2)Z_3=Z_1(Z_2Z_3), \text{ for any B 3 complex nos } Z_1, Z_2 \& Z_3.$$

F3 Fa complex no.
$$0 = 0 + i0$$
 s.t.

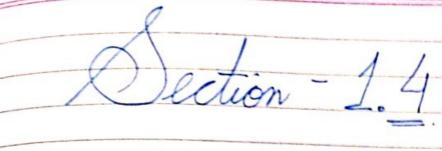
Z+0 = 0 + Z = Z + complex no. Z.

Here, 0 is the additive identity.

Low any complex no. Z, we have

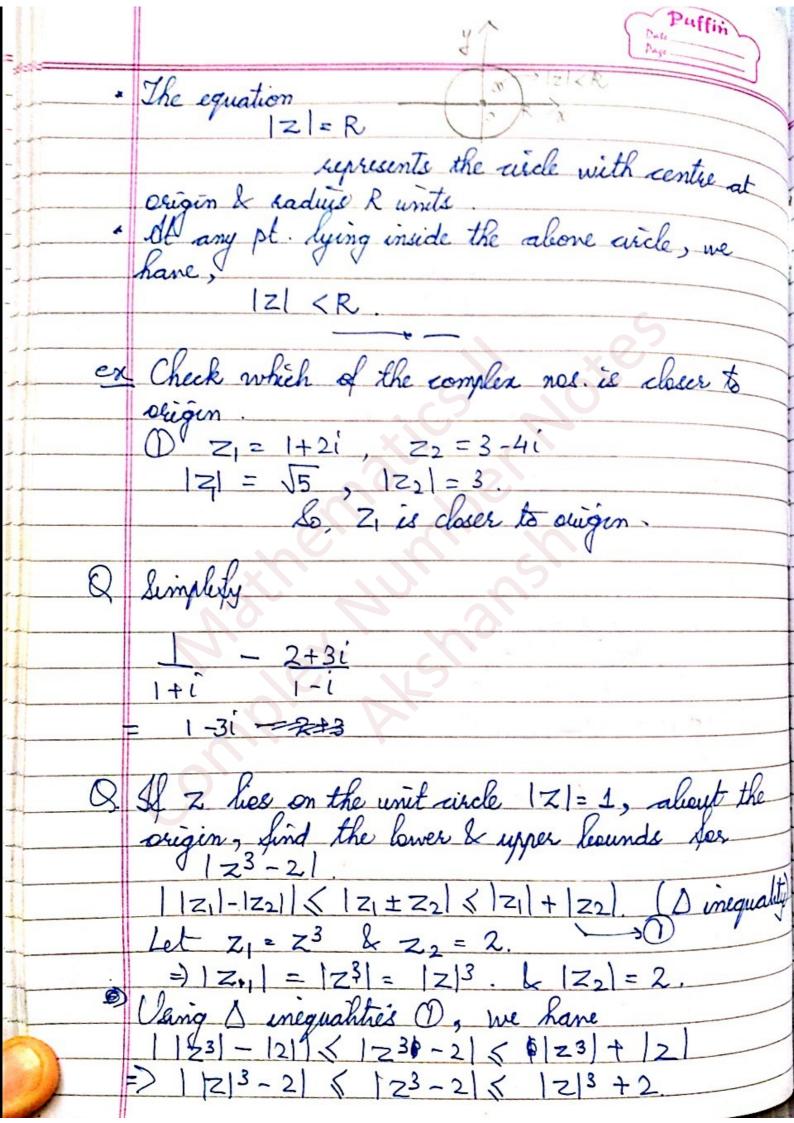
Z.1=1.Z=Z, where 1=1+i0; 1: multiplicative identity

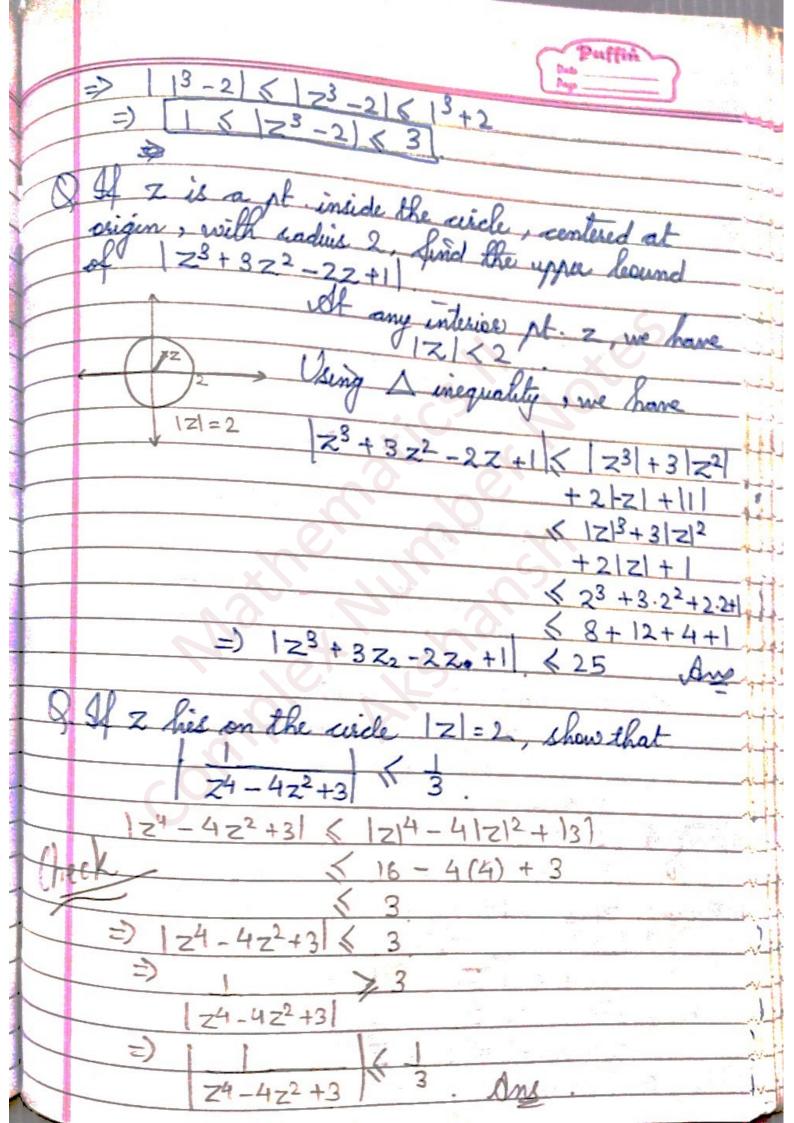
P4 We define (-1) = - Z, then, z + (-z) = (-z) + (z) = 0Here, - Z is the additive inverse which exists + complex no. 2 If $z \neq 0$, then, we define $z = z^{-1} = x + i(-y) +$ $Z.\frac{1}{7} = \frac{1}{7}.Z = 1$ P5 For any 3 complex nos. z_1, z_2, z_3 , we have $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$. P 6 Few complex noe. Z_1, Z_2, Z_3 & Z_4 with $Z_3 \neq 0$ & $Z_4 \neq 0$ $\left(\frac{Z_1Z_2}{Z_3Z_y}\right) = \left(\frac{Z_1}{Z_3}\right) = \left(Z_1Z_2\right) \left(Z_3^{-1} \cdot Z_4^{-1}\right)$ $\left(\frac{Z_1Z_2}{Z_3Z_y}\right) = \left(\frac{Z_1}{Z_3}\right) \left(\frac{Z_2}{Z_4}\right) = \left(\frac{Z_1Z_2}{Z_3}\right) \left(\frac{Z_3^{-1}}{Z_4}\right)$



The modulus of a complex no. Z = x + iy is denoted & defined by $|Z| = \sqrt{x^2 + y^2}$ & this denotes the distance of Z from the origin (0+i0). - If |z| / |z2|, then, z1 is closer to the! # TRIANGLE INEQUALITY Fer any 2 complex nos, 2, & Zz, we have $(\hat{u}) | z_1 + z_2 | \langle |z_1| + |z_2| \langle (\hat{u}) | |z_1| - |z_2| \langle |z_1 - z_2| | \langle |z_1 - z_2|$ * The lever and upper bounds of 12, ±22) is $|z_1-|z_2| < |z_1+|z_2| < |z_1+|z_2|$

The equation of a circle with center at Zo & radius R units is written as



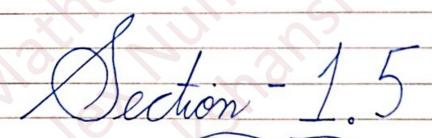


M2 Consider $z^4 - 4z^2 + 3 = (z^2 - 3)(z^2 - 1)$ \vdots $|z^4 - 4z^2 + 3| = |z^2 - 3||z^2 - 1|$

z2-3/|Z2-1/>

1 z4-4z2+3) > 3

124-422+31



A CONJUGIATE OF A COMPLEX NO: -If z = x + iy is a complex no., then its conseignte is denoted & defined by

ニュナス

 $\overline{z_1}\overline{z_2} = (\overline{z_1})(\overline{z_2}).$

22 70

x = Re(z) =

y = Im(z) = Z-Z

6) $Re(z) \leqslant |Re(z)| \leqslant |z|$ $4m(z) \leqslant |9m(z)| \leqslant |z|$

@ |z1. Z2 | = |z1 | | z2

 $|\frac{z_1}{z_2}| = \frac{1}{2}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}$

Dections 1.6, 1.7 & 1.8

& POLAR FORM, PRODUCT & QUOTIENTS IN POLAR FORM

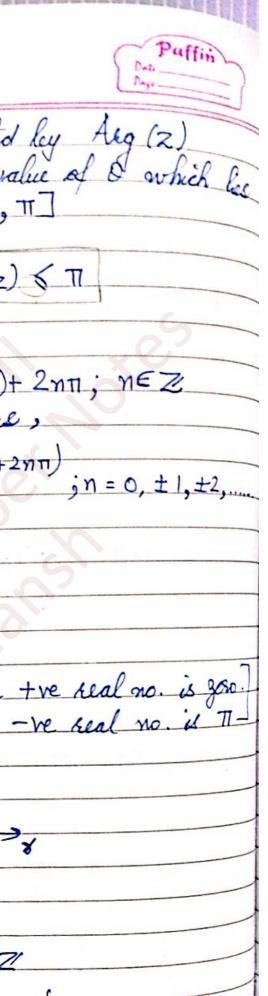
Let Z = x + iy is a mon zero complex no $(Z \neq 0)$.

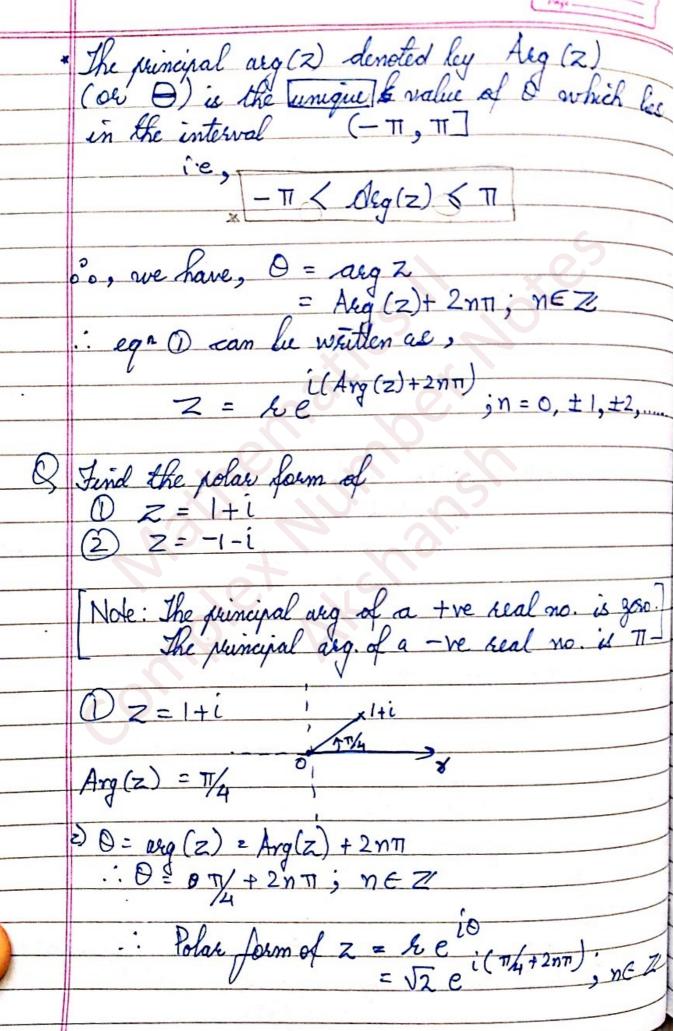
The polar form of Z is given by

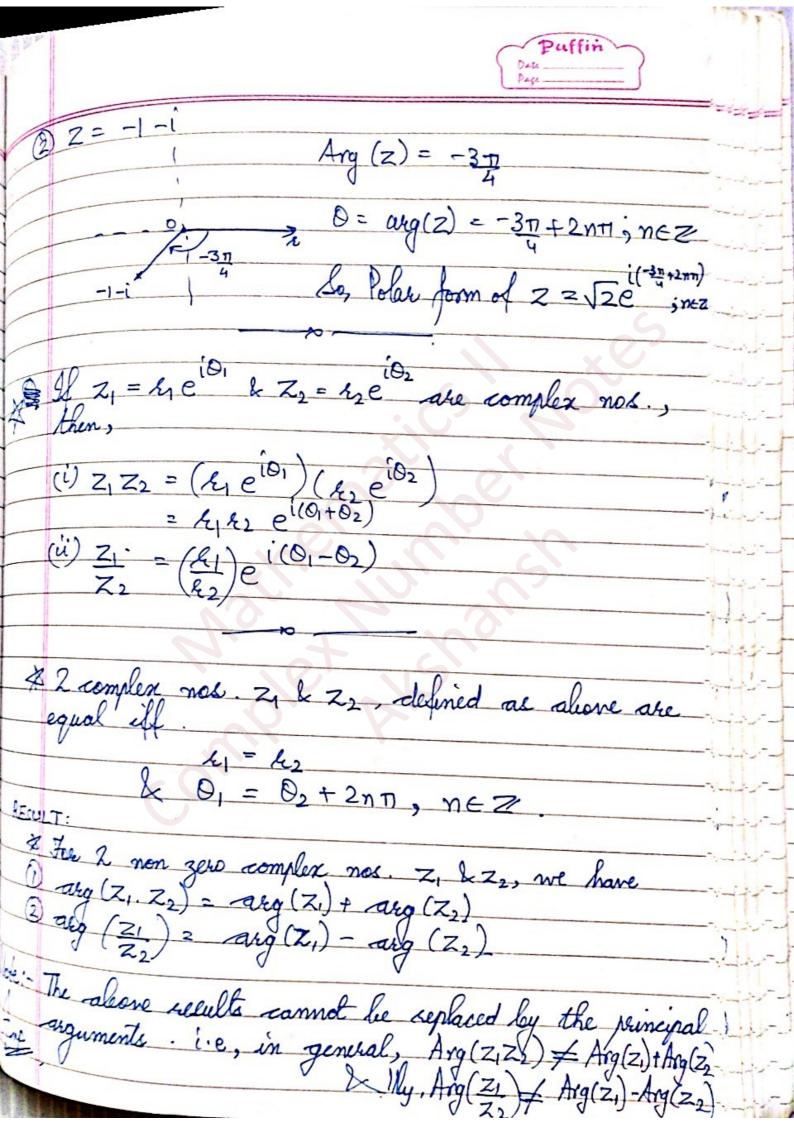
where is the modulus of 2, 121 distance of Z from origin O is the angle made by radius vector with the +ve z axis. It is given by tanO = (Y) = (In(Z)) Re(Z)

Here, k = 12170

The set of all values of 0 is called argument of Z & is denoted by arg (Z).







O. Check the previous note with the ex. $z_1 = -1 & z_2 = i$ $y_{10}(z_1) = TI$ $y_{20}(z_2) = T/2$ $z_1 = -1 & z_2 = i$ $z_2 \neq i$ $z_1 = -1 & z_2 = i$ $z_2 \neq i$ $z_2 \neq i$ $z_1 = -1 & z_2 = i$

Aug (2,) + Aug (22) = 371 -1

 $z_1 z_2 = -i$, $Ag(z_1 z_2) = -\frac{\pi}{2}$

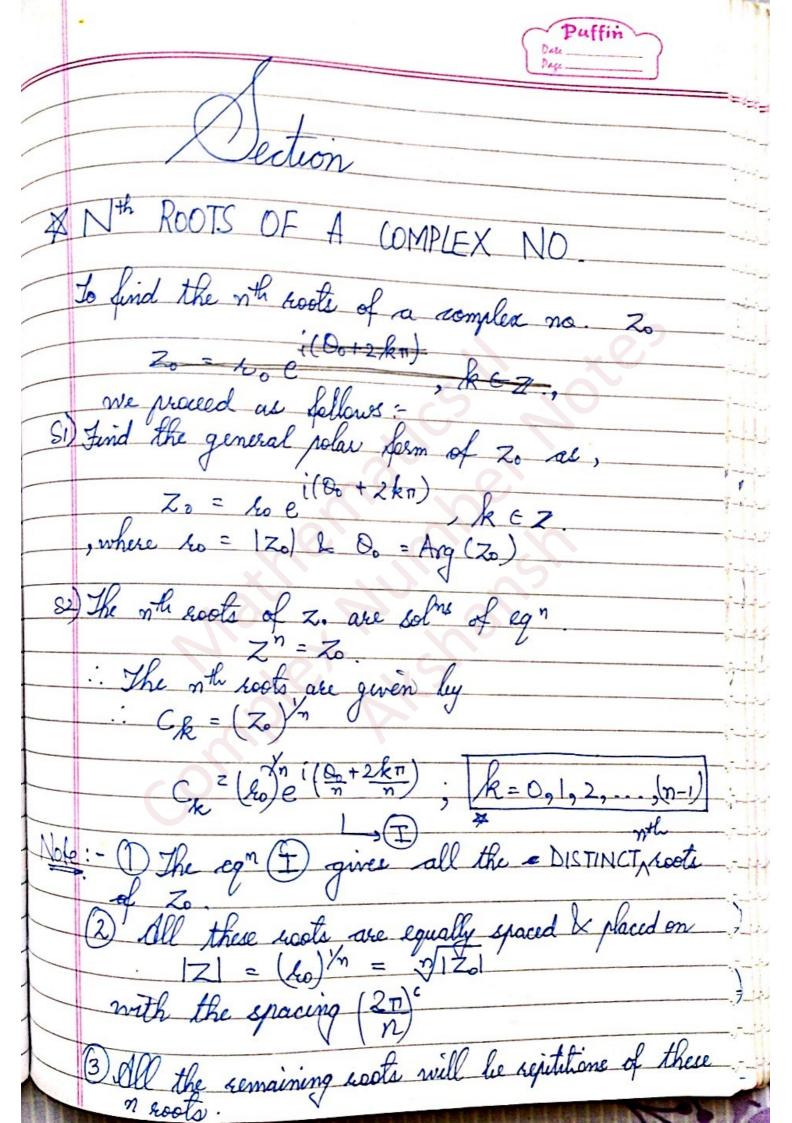
Clearly, (D # 2) Lo, Arg (z, Z2) # Arg (Z1) + Arg (Z2).

Note: In the alione ex, $avg(z_1) = Avg(z_1) + 2n\pi = \pi + 2n\pi, \pi \in \mathbb{Z}$ $avg(z_2) = Avg(z_2) + 2n\pi = \pi + 2n\pi, \pi \in \mathbb{Z}$

Lo, arg (Z1) + arg (Z2) = 3T1 + 2NT1, $n \in \mathbb{Z} - \mathbb{D}$

arg (Z122) = Arg (Z1Z2) + 2nT1 - 2)

For (D, when n = 0 b for (D) when n = 1, arg $(z_1 z_2) = \text{arg } (z_1) + \text{arg } (z_2).$

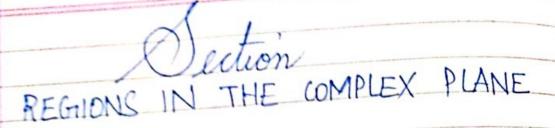


Find the rule works of writy = $|Z_0| = \sqrt{|z|^2} = 1$, $Q_0 = Arg(Z_0) = 0$ $\therefore \Theta = \arg(Z_0) = \arg(Z_0) = \arg(Z_0) = 2$ = 2 = 2 = 2Zo = 1 = 20 C 1 (2KT) -> 7 = 0 ((2kn); & EZ .. The cube roots of to are given by $e^{\frac{1}{2}\pi/3} = \cos 2\pi + \frac{1}{3} + \frac{1}{3}$ $= \frac{1}{2}c_1^2 - \frac{1}{2} + i\sqrt{3} = \omega$ $= -1 - i\sqrt{3} = \omega^2$ Find whe roots of -8i

when
$$k = 0$$
: $i(-\frac{\pi}{6})$
 $= 2(\sqrt{3} - i \cdot 1) = \sqrt{3} - i$
 $k = 1$:

 $C_1 = 2e^{i(-\frac{\pi}{6} + 2\frac{\pi}{3})} = 2(+i) = 2i$
 $k = 2$: $C_2 = 2e^{i(-\frac{\pi}{6} + 4\frac{\pi}{3})} = 2(-\sqrt{3} - i) = -\sqrt{3} - i$

$$k=2$$
: $C_{\lambda} = 2e^{i(-\frac{\pi}{6} + 4\frac{\pi}{3})} = 2(-\sqrt{3} - i) = -\sqrt{3} - i$



· On E-neighbourhood of a pt. Zo in the complex plane is a aicular disk, centered at Zo with In the above E-neighbourhood, the pt. Zoil

deleted, then, neighbourhood is referred to as

a DELETED neighbourhood of Zo

· it pt. To it said to be an interior pt of a set S, in the complex plane, if I a neighbourhood of Zo which completely lies within S.

It is said to be an exterior pt. of S, if I a neighbourhood of Zo which her completely

It is seed said to be a boundary it if every

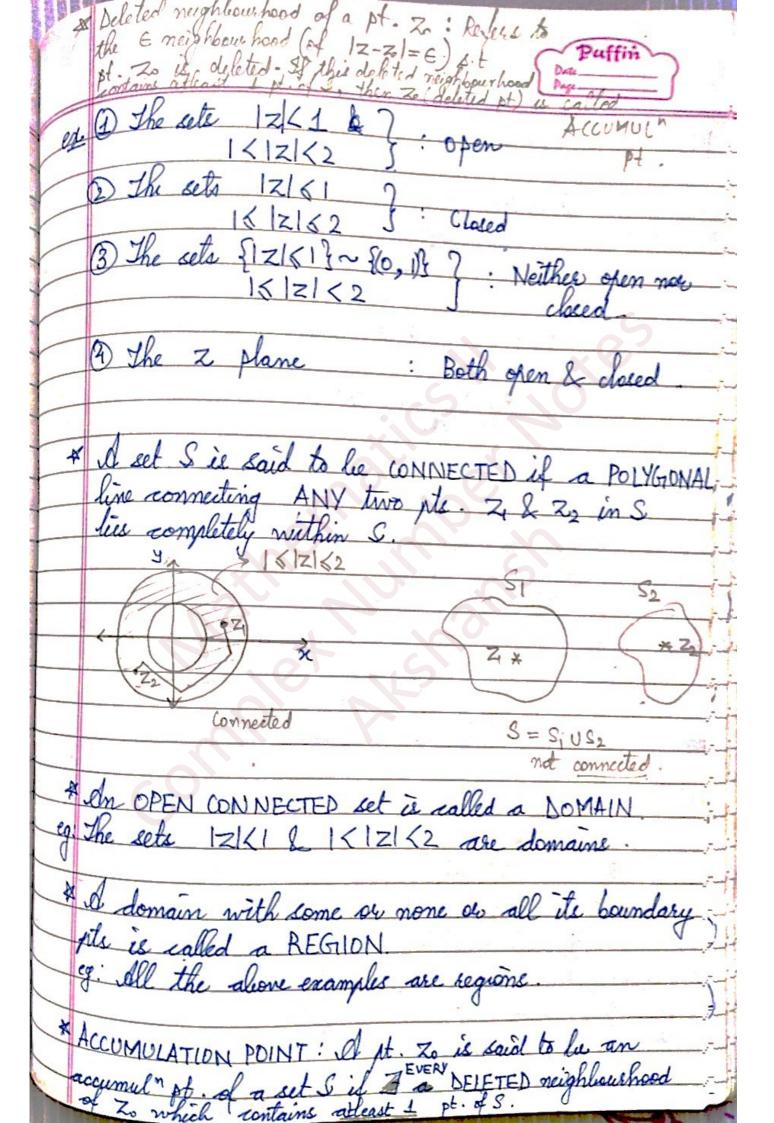
neighbourhood of to containe the of S & pte

outside s

> interes ederies " · boundary

A set S is said to be OPEN if it contains All

Loundan ets. le CLOSED if it contains Alle



Note: All the interior & boundary pts. are accumulated the interior of boundary pts. are accumulated its accumulated pts. They its a closed set. eg: S= {2+i, 3-i, 2i} Then, & contains no eg (2): Let S= { i | n ∈ Z+} Z=0 is the accumula pt. 1 S & it doesn't belong to s.

Shapter - 2 CTIONS OF A COMPLEX VARIABLE

Let S be the set of complex nos. A fr (f' on S' on S' a rule that assigns a complex no. w for each complex no. Z in S & we write

* If, for each Z I only one w', then, wis said to be a single valued In of Z. then, wis said to be a many valued for. ex: w= Z2, sinz are single valued eg@):- W= \\ \n is a two valued for

eg (3):- W= lnz is a many valued for.

We represent a complex valued In se follows: Cartelian form: Let Zcx+iy.

W= u+iv.

=) v = f(z) =) v + (v = f(x + iy))

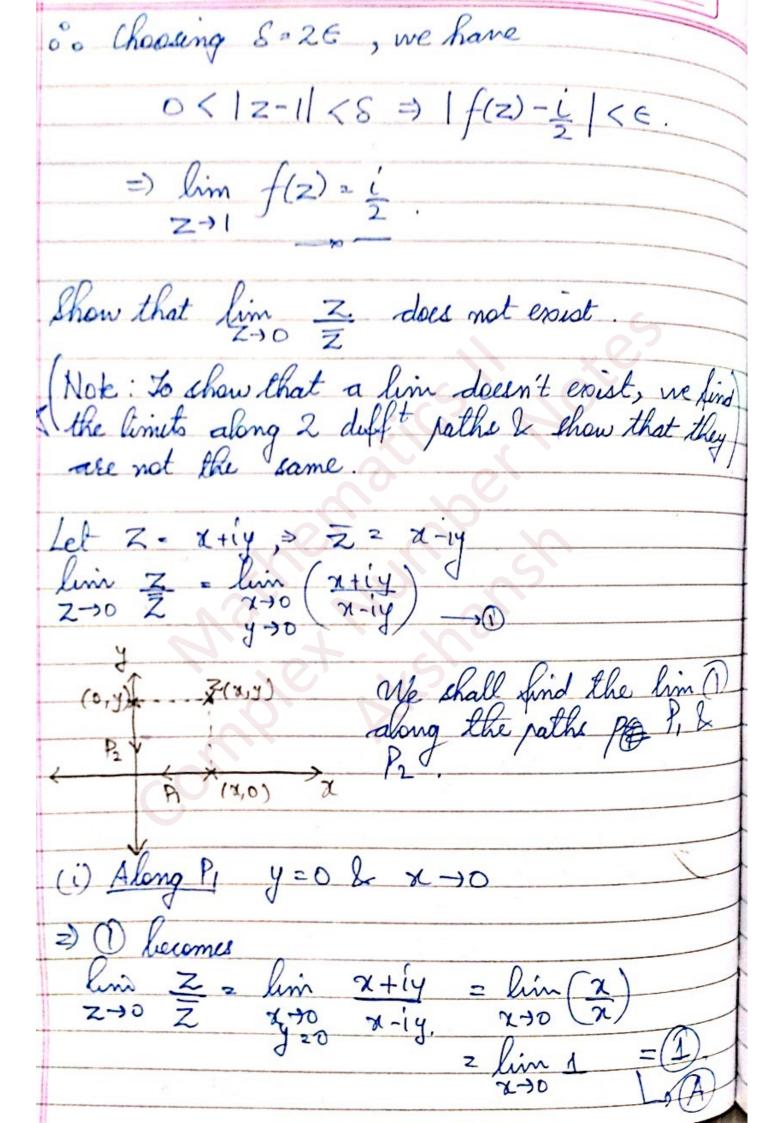
Hence, we represent the complex valued for in 2 Separate planes, namely:

Z-plane, with the X&y axis as real & imaginary axis resp.

(ii) w-plane, with v & v apis as the real & imaginary apis kesp.

If z traces a dure C in & z-plane, then correspondingly w will trace another curve C z-plane (ii) Polar form: Let Z= re(0) L-W= U+iV. Consider w = f(z)=) $v + iv = f(re^{i0})$ =) U = U (k, 0) V=V(6,0) W= 22 using eastesian form. Express the for Cartisian Let Z = noin W=U+LV Weutiv 2) W = Z2 $W = Z^2$ =) U+iV= (1eio)2 =) U+iv= (x+iy) = 12 (cos 20 + isin $\Rightarrow U = \pi^2 - y^2$ $=) U = L^{2} \cos 20$ V = 2xy V = 128in20

Dection 15 * LIMITS Let we f(z) be a complex valued for, defined at all pts in a neighbourhood of zo, possibly - - i-1-imante it it is a We say that whas a limit & 'L' when 2 approaches Zo (2-> Zo), if following and me are رائيد المسائلات (i) + € >0, ∃ \$ >0 s.t, 0 < 1z-zol < \$ →> | f(z)-L| < €. 2, we write, $\lim_{z\to z_0} f(z) = L$ Here, 2 approaches 20 in an infinite no. of ways. -را بدلسر ex Show that line $f(z) = \frac{i}{2}$; if $f(z) = \frac{i}{2}$ سر ہے۔ - wife Consider $|f(z)-1| \le |f(z)| \le$ المانات مر ملي => | i (Z-1) | <€. 3 =) /i/(z-1)/(E =) | |(z-1)| LE or |z-1| <2E.



Puffin Date Page (i) dlong P2 :- x=0; y >> 0 the limit 1 doesn't exist. CONTINUITY of a COMPLEX VALUED FUNCTION * Let W = f(Z) be a complex valued for defined at all its in some neighbourhood of Zo. Then, I fis said to be ate at Zo if the following cond ms are satisfied:

(i) $f(Z_0)$ exists. (ii) lim f(z) existe Z→Zo (iii) lim f(z) = f(za), in whatever manner z-z All polynomial, enponential & circular from streets. in their DOMAIN OF DEFINITION.

Product for are of the first are of the · Compose of the fire is ats

Note: The following are TRUE in case of limits:

1. If

lim f(Zo) = Wo = Uo + i Vo

272 & f(z) = W. = vtiv. 2. If line f(2) = Wo & line g(2) = Lo 2+20 (2)= Lo then (i) lim [f(z) ± g(z)] = Wo ± Lo (ii) lim [f(z).g(z)] 2 Wo Lo 2+20 (iii) $\lim_{z \to z_0} \left[\frac{f(z)}{g(z)} \right] = \underbrace{Wo}_{z \to z_0}; \text{ if } L_0 \neq 0$

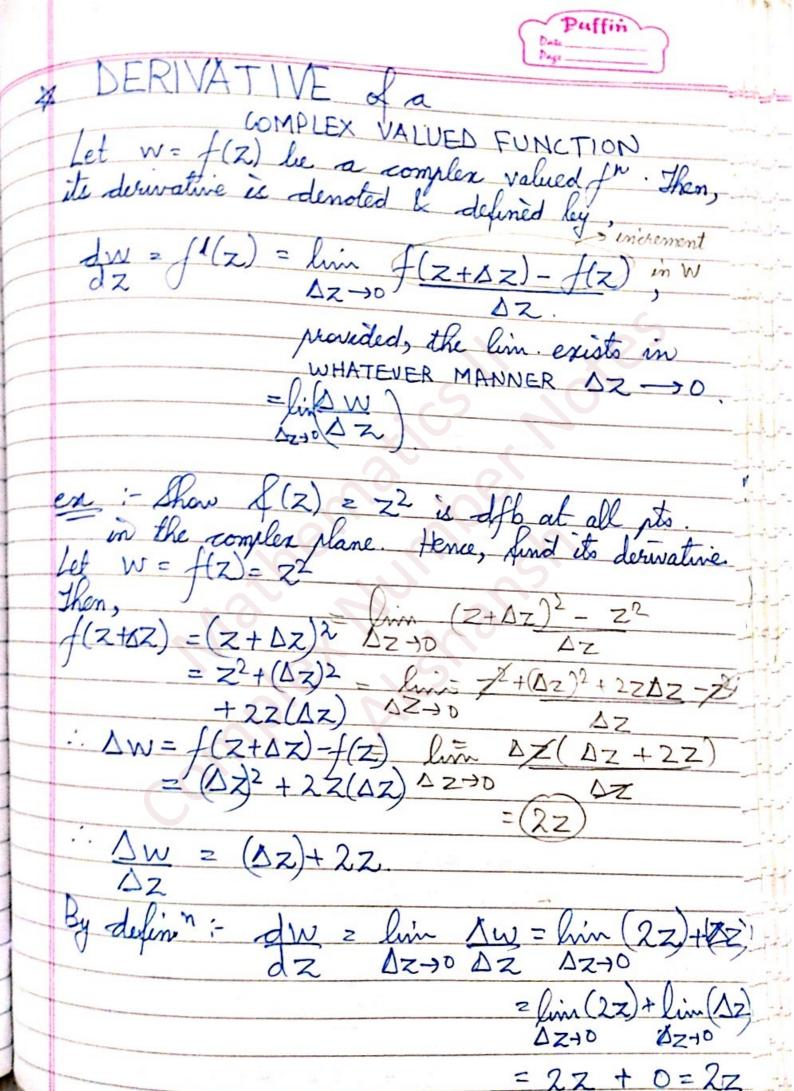
(iv) lim c = c; c: complex constl.

2>20

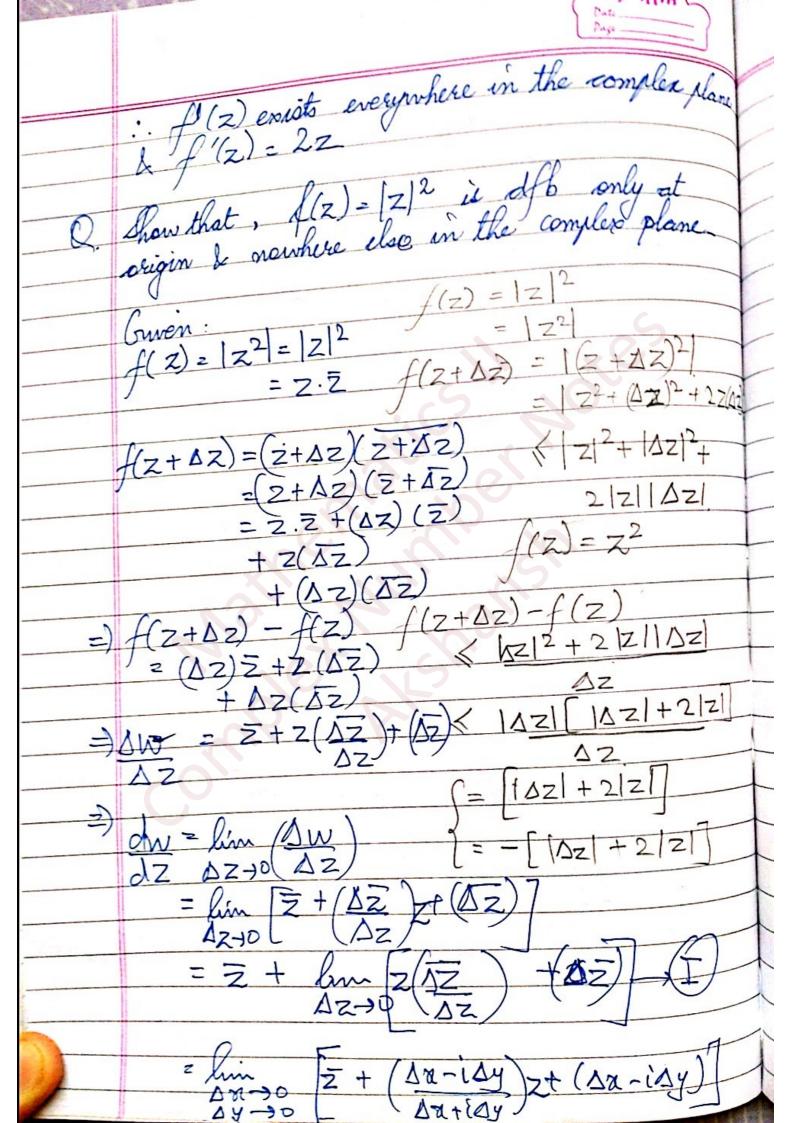
(iv) lim c = c; c: complex constl.

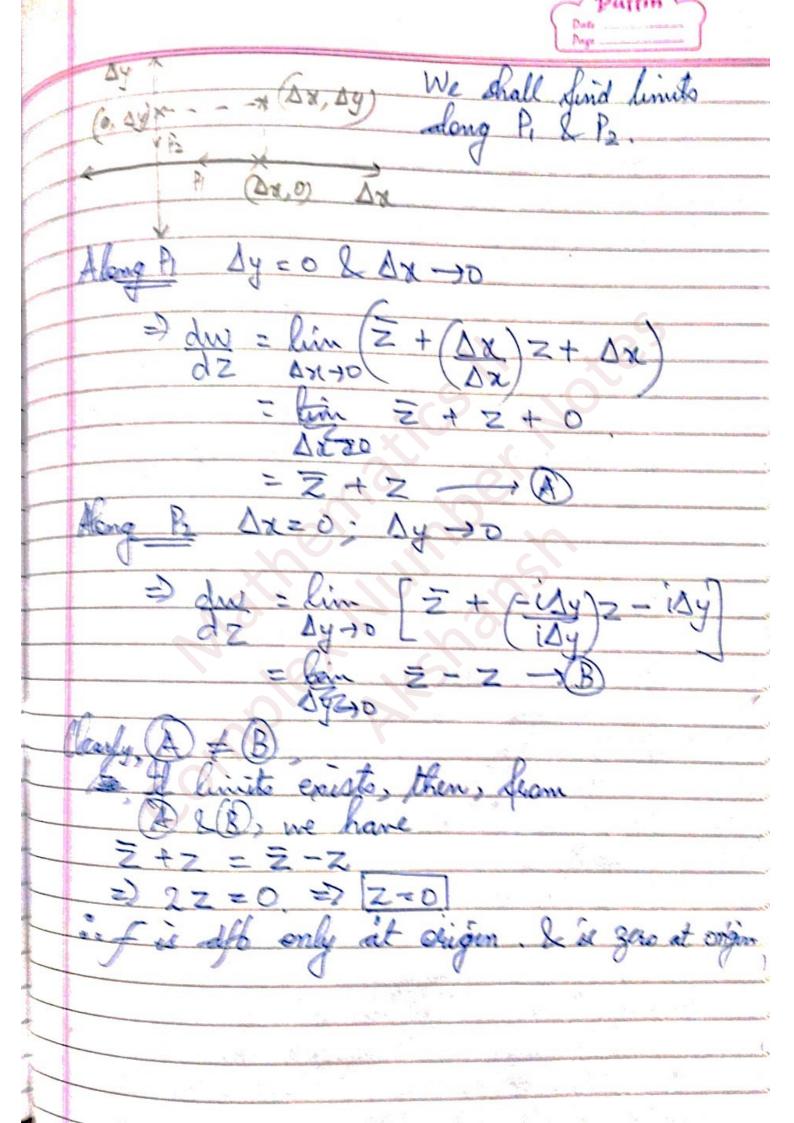
(v) lim (Z) = Zo n.

(vi) lim P(z) = P(zo); P: Polynomial. Z→Zo



, in whatever manner DZ - 0 =





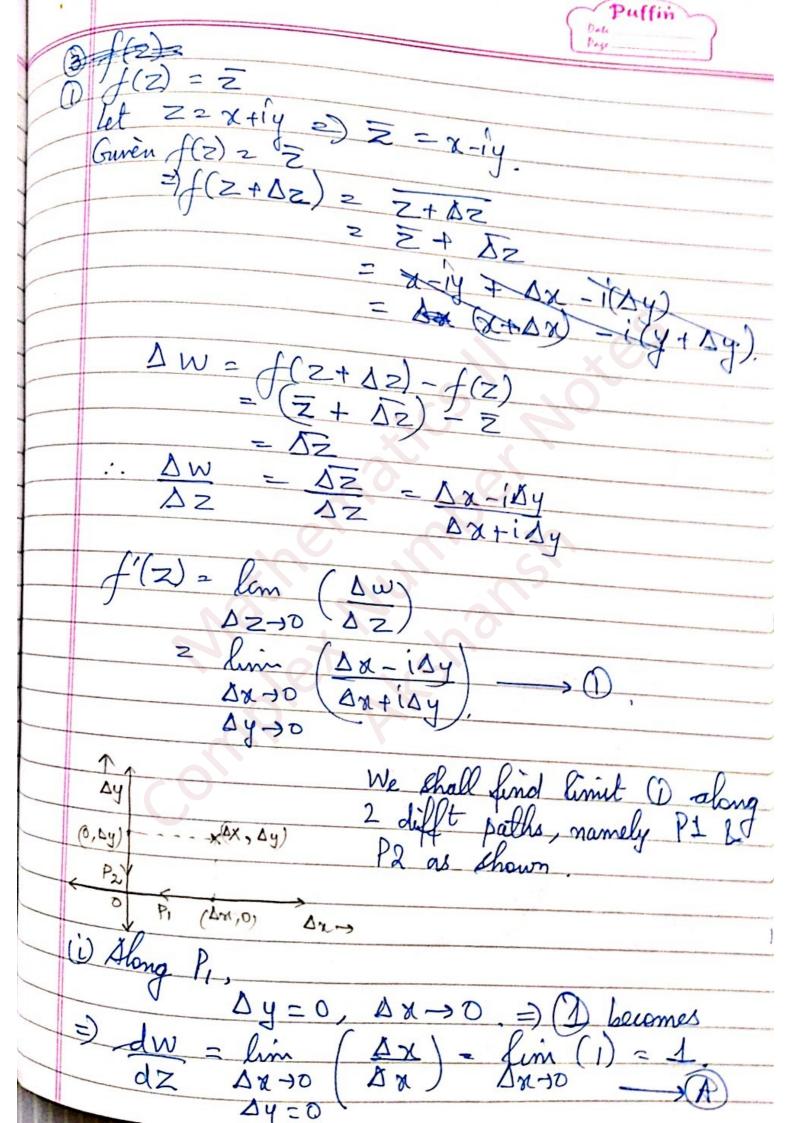
Date Puffin
ANDARD RESULTS
I having are complex valued fins having revature in some region in the complex ne, then,
$\frac{d}{dz}(f(z)\pm g(z)) = \frac{df}{dz} \pm \frac{dg}{dz}$
$\frac{1}{12}(f(z).g(z)) = f(z)dg + g(z).df$
$\frac{d}{dz} \left[\frac{f(z)}{g(z)} \right] = g \frac{df}{dz} - f(z) \frac{dg}{dz}$ $\frac{d}{dz} \left[\frac{g(z)}{g(z)} \right]^2 ; g(z) \neq 0$
$\frac{d}{dz} \left[f(g(z)) \right] = \int'(g(z)) g'(z)$
dw z dw dz
d(c) = 0; c: conett
dz $(Z_{\mu}) = \omega Z_{\mu + 1}$
d (P(2)) = D(2)

* STANDARD RESULTS

plane, then,

= P'(z): Polynomial in Z.

Monomial deesn't exist, if



(ii) dleng P2 ~> 0, Dx => 0 =) ① hecomes $\frac{dw}{dz} = \lim_{\Delta y \to 0} \left(\frac{Q + i \Delta y}{Q + i \Delta y} \right) = \lim_{\Delta y \to 0} \left(\frac{-i \Delta y}{Q}$ From the eq. (A) & (B), linute are not the same along 2 difft raths. Hence, f & A anywhere in the complex plane. 2) let 2= x+iy. Guien = f(z) = x $=) f(z + \Delta z) = x + \Delta z$ DW = f(Z+DZ) - f(Z) =(x+0x) - a(x) $=\Delta x$. =) AW = DX DZ DX+iDy. $A'(z) = \lim_{\Delta z \to 0} (\Delta w)$ = him (Arl Dx+idy) along 2 difft paths,

Pi (Dx,0) 2 -> namely, P. & P2.

is dlong P, , Dy=0, Dx >0 e) $dw = lim (\Delta x) = lim (1) = 1$ $\Delta x \rightarrow 0 \qquad \Delta x$ (ii) Along P_2 , $\Delta x = 0$, $\Delta y \rightarrow 0$ $\frac{dw}{dz} = \lim_{\Delta x = 0} \left(\frac{80}{i\Delta y} \right) = 0 \longrightarrow (B)$ $\Delta y \rightarrow 0$ $\frac{dy}{dz} = 0$ From egn A & B, limits are not the same in the complex plane. Hence, & Frances 3) Let Z= x+iy f(z) = y $f(z) = y + \Delta y$ $\Delta W = f(z + \Delta z) - f(z)$ $z + \Delta y = \Delta y$ $\Delta w = \Delta y$ $\Delta z \qquad \Delta x + i \Delta y$ $\Delta z \qquad \Delta w = f'(z) = \lim_{\Delta z \to 0} (\Delta w)$ $\Delta z \qquad \Delta z \rightarrow 0 (\Delta z)$ $2 \text{ lim} \left(\Delta y \right)$ $\Delta x \rightarrow 0 \left(\Delta x + i \Delta y \right)$ $\Delta y \rightarrow 0$ P, (Sx,0) x 2 difft paths (P, L. P2)

as shown.

(i) Olling P₁, $\Delta y = 0$, $\Delta x \rightarrow 0$ $dw^2 = lm$, O = 0. $\rightarrow A$ $dz = \Delta y = 0$ (ii) Along P₂ $\Delta x = 0$, $\Delta y \rightarrow 0$ $\Delta w = \lim_{d \to 0} (\Delta y) = \frac{1}{2} = \lim_{d \to 0} (1)$ $\Delta z = 0$ $\Delta x = 0$ $\Delta y \rightarrow 0$ From eq " (A) & (B), line limits are not eq equal, so, f Z anywhere in complex plane. Let f denote the f^n whose values are $f(\frac{z}{z}) = \int (\frac{z}{z})^2$; $z \neq 0$ (2) Show that, if z = 0, then, $\Delta w = 1$ at each non zero pt. on the seal & imaginary axis in the sz. Name. (DX-Dy plane).

(b) Then, show that DW = -1 at each non zero it on the line Dy 2 dx in that plane (onelude from the aliene observed that f'(0) A (doesn't exist),

(2+12) -41 (Z) ([Z) + 27/2] - Z2 Z+ L2 Z 7/2 + 7/52)2 + 2.27/62) - 7/2-15 12'Z+42) = z(1/2)2 - 1/2 z + 22 z (1/2) 12 (2-12) = Z(1)-(5)+222/2+42) $\frac{1}{\Delta z} = \frac{2z\overline{z} - (\overline{z})^2 + 2(L\overline{z})}{(z+\Delta z)}$ By defin", DW = f(Z+12) - f(Z)
When Z=0, DW = f(0+DZ)-f(0) $= f(\Delta z)$ $\Delta W = (\Delta \overline{z})^2$ $\frac{\Delta z}{\Delta z} = (\Delta \bar{z})^{2} z (\Delta x - (\Delta y)^{2})$ $\frac{\Delta z}{\Delta z} (\Delta z)^{2} (\Delta x + (\Delta y)^{2})$ AY SAY (0, by

Along P₁ $\Delta y = 0$ $\Delta z = (\Delta x)^2 = 1$. $\Delta z = (\Delta x)^2$ idling P2, Dn=0. $\left(\frac{\Delta w}{\Delta z}\right) = \left(-i\Delta y\right)^2 = (-1)^2 = \Delta - \sqrt{2}$ $\left(i\Delta y\right)^2$ oflong P_3 , $\Delta y = \Delta x$. =) $(\Delta w)^2 (\Delta x - i\Delta x)^2 = (1-i)^2$ $(\Delta x)^2 (\Delta x + i\Delta x)^2 = (1-i)(1-i)^2$ = $(1-i)(1-i)^2$ =) 1, P, & P2 -1, slong P3 in the limit takes diff t values along liff t paths. of (0) I

ection 21 CAUCHY-RIEMANN EQUATIONS (CR equations in cartesian form) hal a derivative = U(x,y) + i(V(x,y))) f'(z) at every pt. in & some & nbd of a pt. Zo. Then, the first order partial Ju, Ju, Jv, Ly exist and

Ja Jy Jx Jy

solisty the egre

Ju = Jv, Ju = -Jv

Jr Jy Jy Jr sat zo(xay) The eque D are called the CR eque in cartesian form & we also write them as: Uz = Vy , Uy = - Vz All to have a derivative at a st. They are NOT SUFFICIENT for a for to have a derivative.

& Sufficient Cond's for a for to have a derivative. Let f(2) = v +iv be defined at all plo in some nod of Zo. Then, & (Zo) exists if the fellowing cond is are true: (i) Uz, Uy, Vx & Vy exist and are its.
(ii) The CR eq ne Uz = Vy & Ny = -Vx are estigied at Zo.

Note: - We find f'(z) in cartesian form as follows: f'(z) = Ux + i Vx.

B. Show that $f(z) = e^z$ is all at all pte in the complex plane & hence, find its derivative.

Let z = x + iy & f(z) = u + ivGiven, $f(z) = e^z$ => Utiv= extiy

= en [cosy + isiny]

 $=> U = e^{x} \cos y$

 $V_x = e^x \sin y$. $V_x = e^x \cos y$. $V_x = e^x \sin y$. $V_y = -e^x \sin y$. $V_y = e^x \cos y$.

De to per CR eque,

· Ux = Vy & Uy = - Vx are true at all pts.

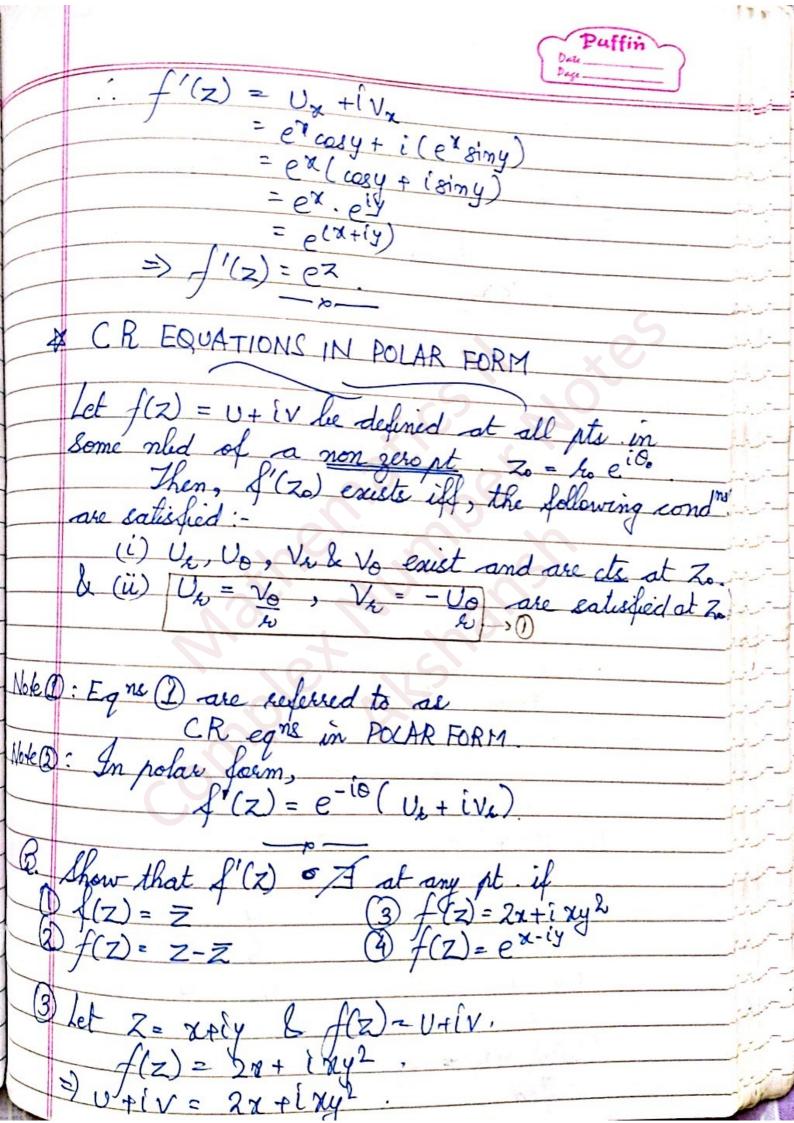
in the Z-plane.

Also, the partial derivatives: Ux, Uy, Vx & Vy

are et everywhere in Z-plane.

i. f'(2) exists - t - 10 - t

i. f'(2) existe at all pte in 2 plane

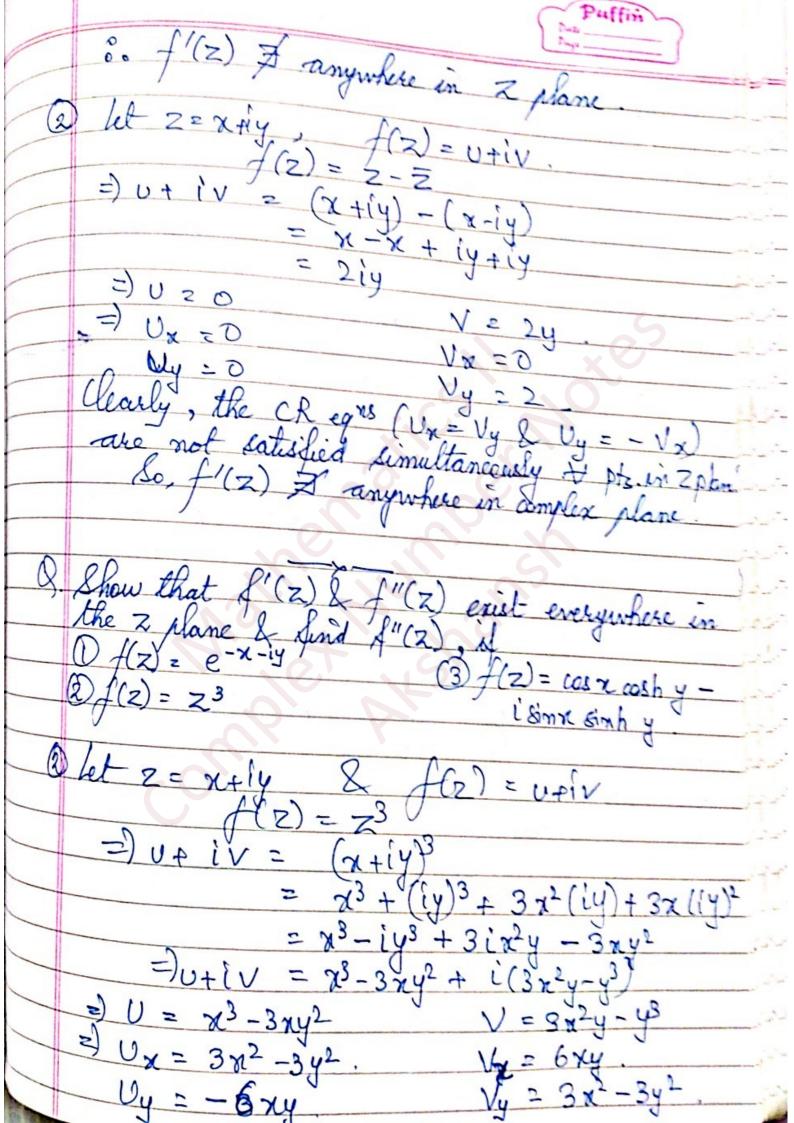


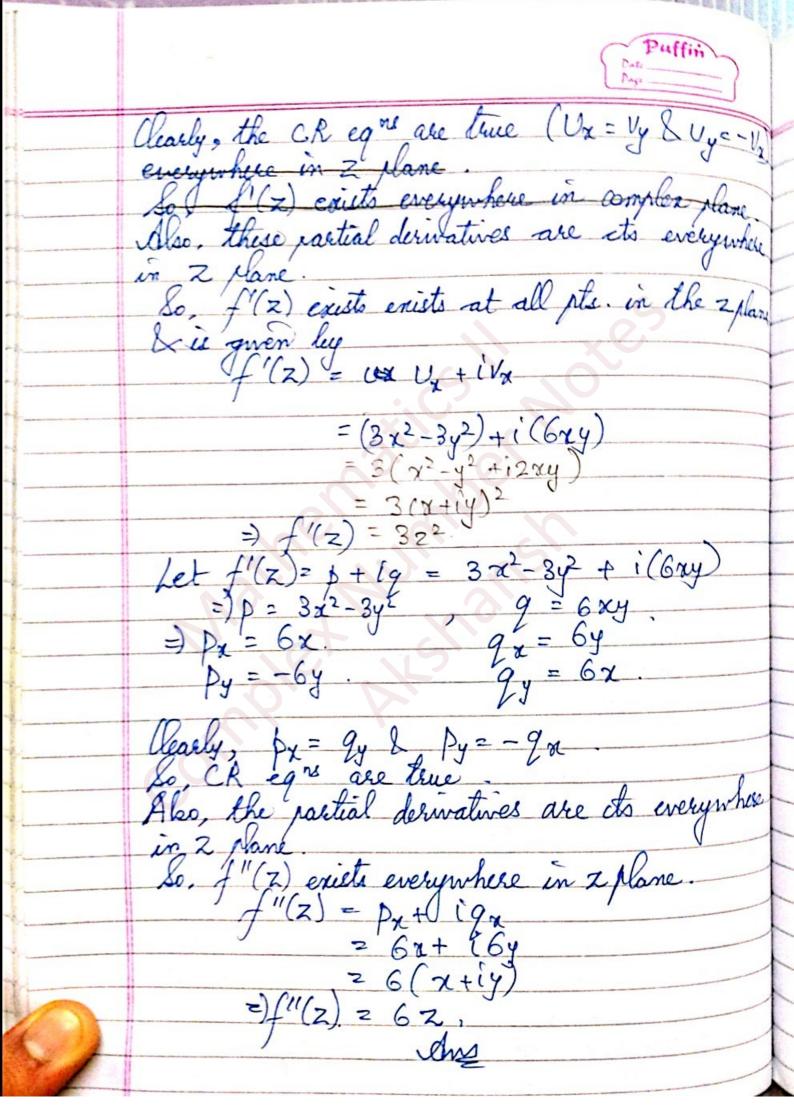
V= xy2 Vx = y2 U= 27 Ug = 2 Uy = D Vy = 2 xy. Clearly, CR eque not solisfied simultaneously Un & Vy & Uy & - Va at any pt. in . . f'(x) I anywhere in the complex plane. (4) Let z = x + iy & f(x) = x + iv, $f(z) = e^{x} - iy$ $= e^{x} (\cos y - i8 im y)$ $= e^{x} (\cos y)$ $= e^{x} \cos y$ $= e^{x} \cos y$ = e1) Let Z=x+iy & f(Z)= U+iV =) U+ (V = Z = x-iy Ux = 1

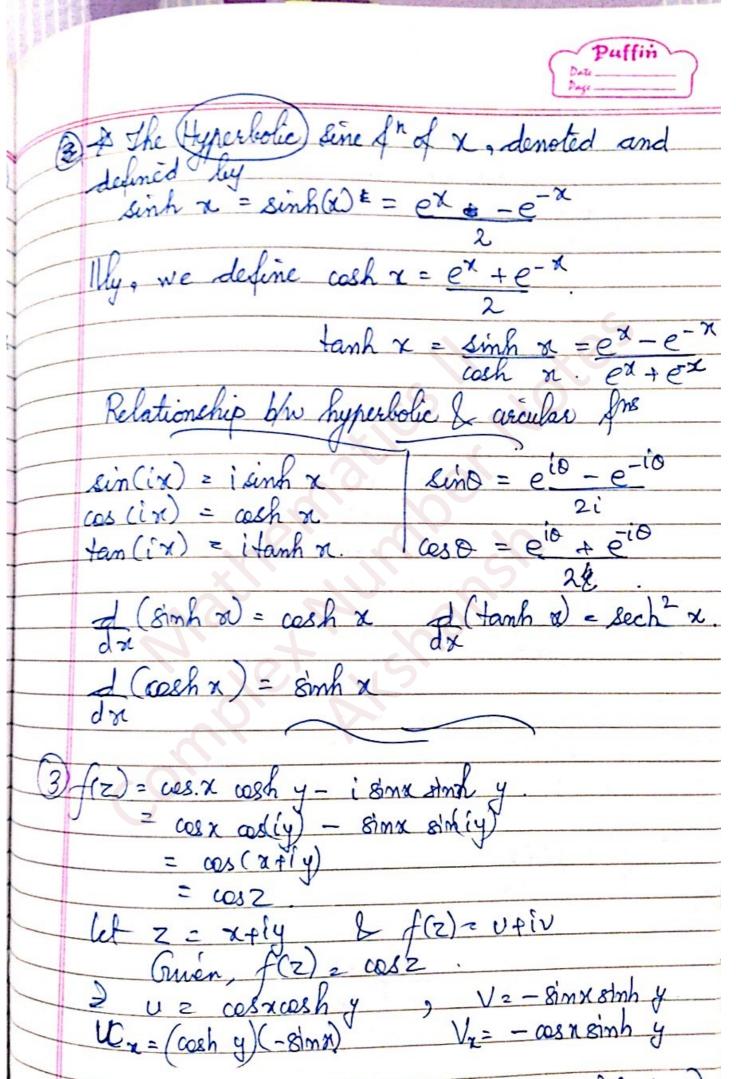
Uy = 0

Vy = -1

Clearly, Ux = Vy & Q. Uy = - Vx are not satisfied simultaneously of pts in Z plane







Uty = (sinh y) cosn Vy = fosh y) (-shinn)

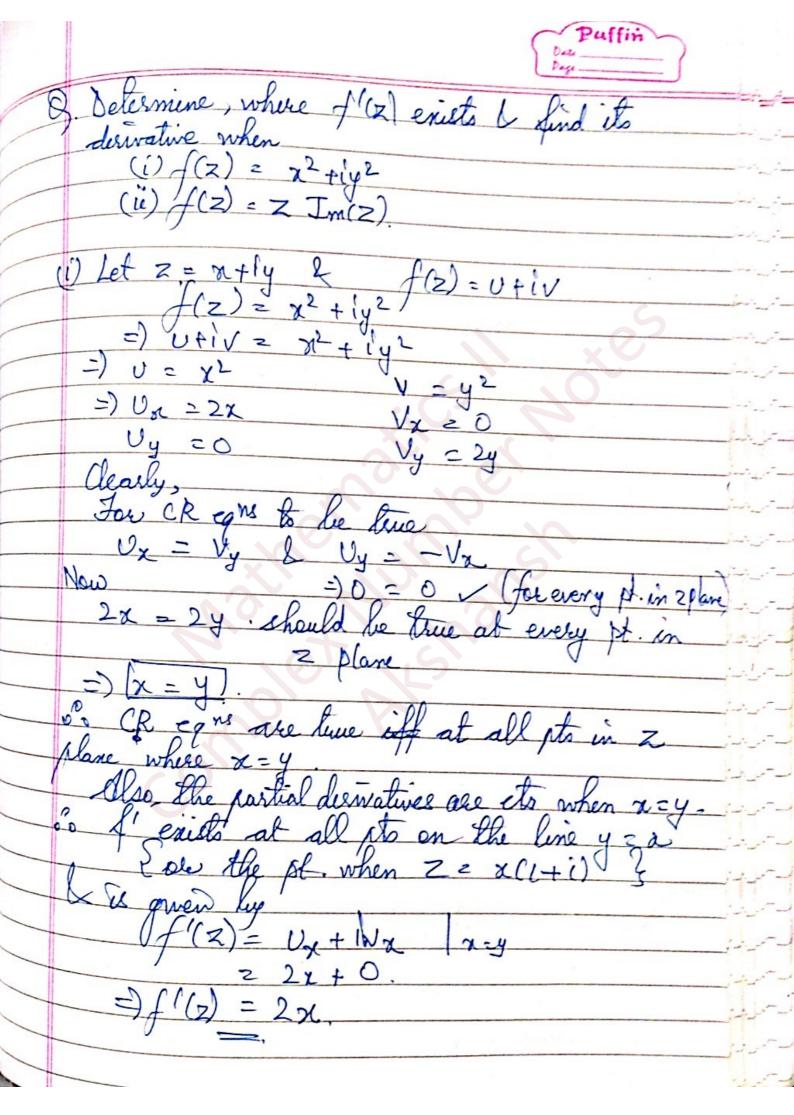
Clearly. Un = Vy & Vx = Uy

Lo, The CR eq ns are true everywhere in the

complex plane & also, the derivatives

Ux, Uy, Vx & Vy are at everywhere in Z plane

"o f'(z) exists at all pto. in Z-pane & is $f'(z) = \underbrace{v_{x}} v_{x} + \underbrace{v_{x}}$ $= -\underbrace{g_{mx}(\cosh y)} + \underbrace{i cosn(\sinh y)}$ $= -\underbrace{g_{imx}(\cos iy)} + \underbrace{cosn(\sin iy)}$ 2 - [8/m(x+fy)] =) p + lq = -simx (ash y) = -l (asx (simh y)) p = -simx (ash y) = -l (asx (simh y)) $p_x = -cosx (ash y) = -asx (simh y)$ $p_y = -simx (ash y) = -asx (ash y)$ $p_y = -simx (ash y) = -asx (ash y)$ Clearly, Px = 9, & py = -9x So CR eq no are true at all its in 2 plane. & Px, Py -9, I 9, are ets al all its in 2 plane. f''(z) exists at all its on the complex plant $f''(z) = P_x + i g_x$ $= (-\cos x \cosh y) + i \sin x \sinh y$ $= - [\cos x \cos (iy) + \epsilon \sin x \sin (i'y)]$ = - $\left[\cos(x+iy)\right]$ =) f"(z) = - Co8Z



(ii) = Z= x+iy & f(z) = v+iv f(z) = v+iv= z(Im(z)) ... V = xy, $V = y^2$. = y = y $= \sqrt{y}$ $= \sqrt{y}$ $= \sqrt{y}$ $= \sqrt{y}$ Ux = y $y = -V_x = 0$ $y = -V_x = 0$ $y = -V_x = 0$ y = 0 y = 0CR egrs are true only at origin & above rasteal derivatives are to only at origin.

I exists only at oligin & nowhere else in complex plane 0=2 xV1+xU =(0)1 = 4+10 | x=0,4=0 2) /1(0) 20 Show that when $f(z) = x^3 + i(1-y)^3$ it is legitimate to white $f'(z) = 3x^2$, only if z = iLet $z = x_i + i(1-y)^3$ $f(z) = x^3 + i(1-y)^3$ $f(z) = x^3$, $f(z) = (1-y)^3$,

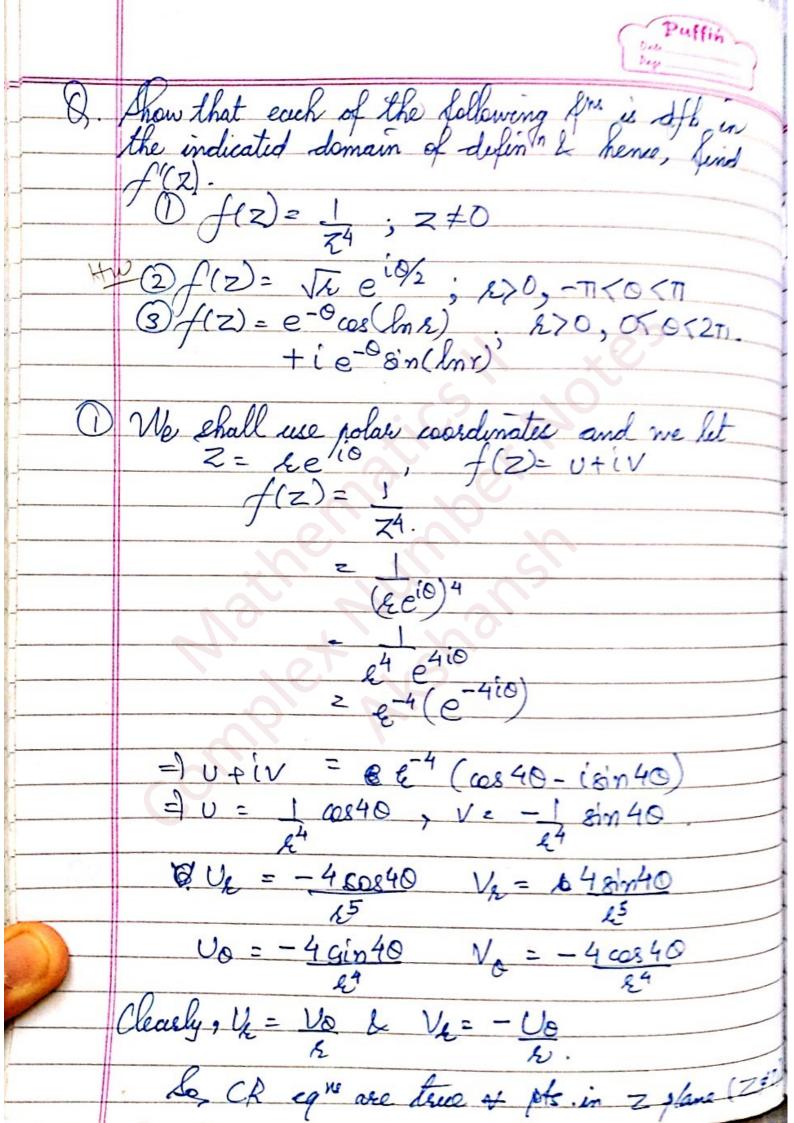
Date Page Um = 3x2 Vy = 0 For CR eque & lue lue,

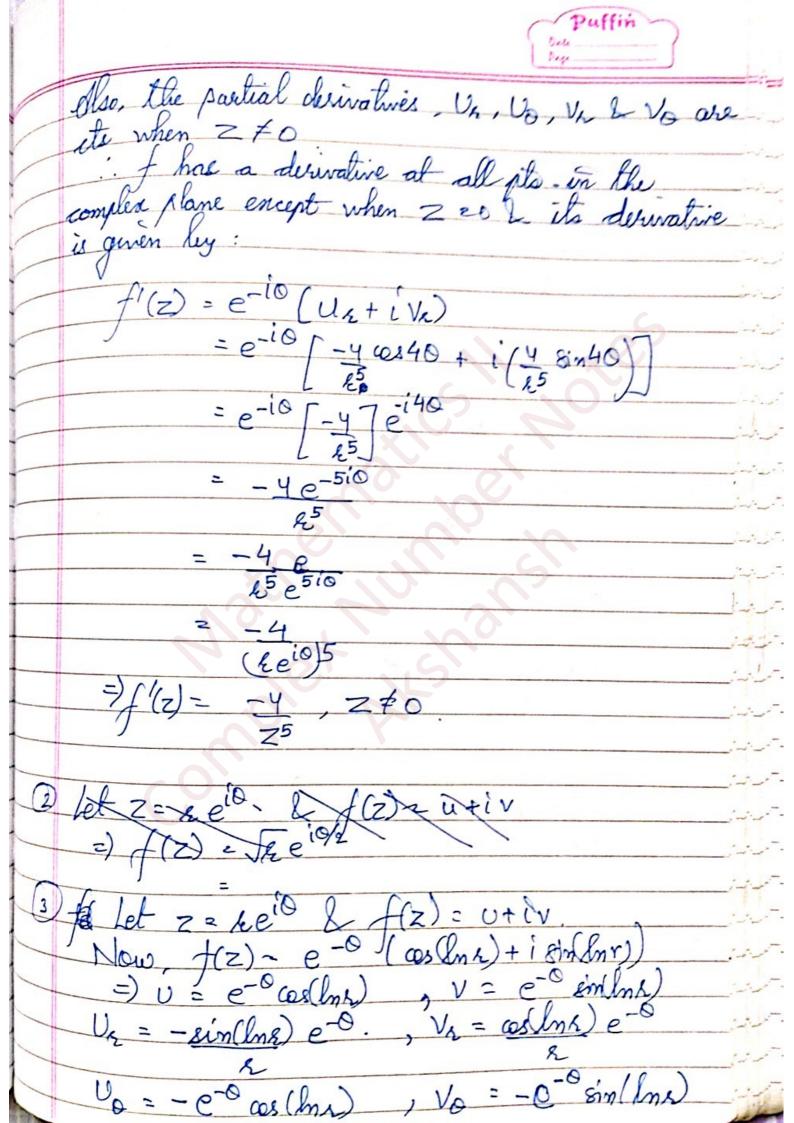
Vy = 9(1-y)2

Vy = 9(1-y)2

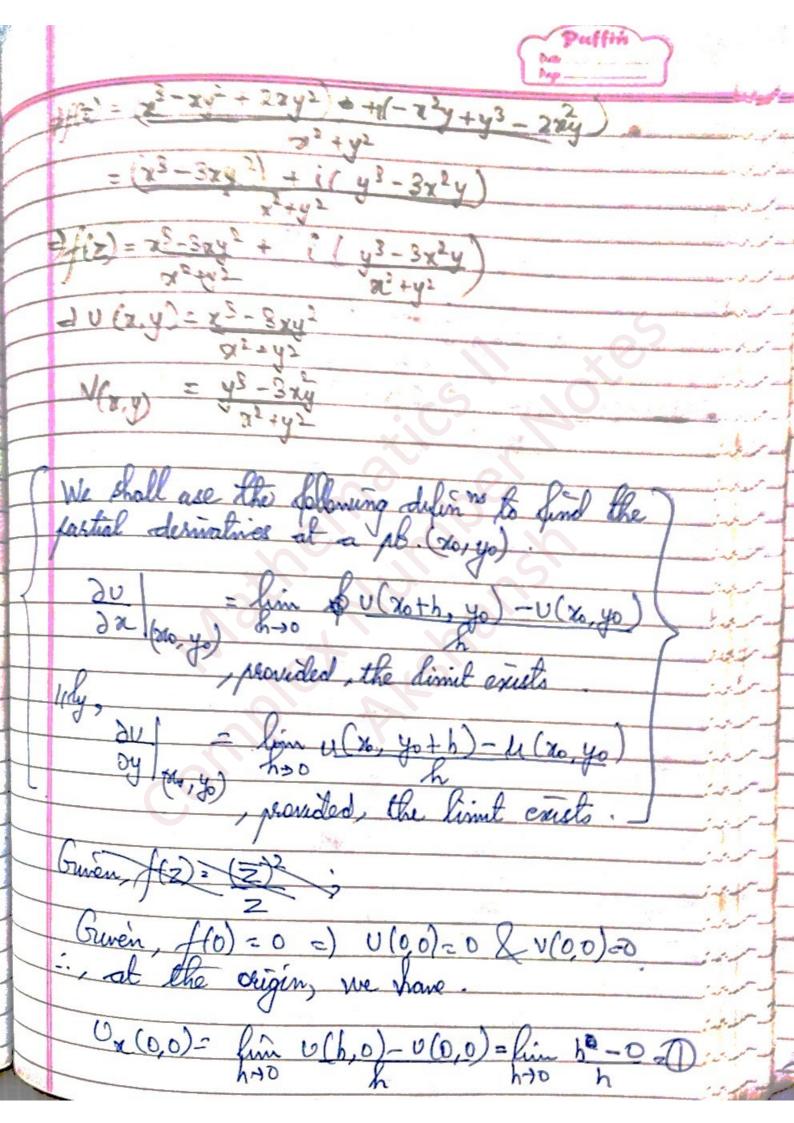
Vy = Vy & Vy = - Vy - Vy = 0 is true + pts. in z plane. Now $U_{x} = V_{y}$ $= \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac$ $x^2 + (1-y)^2 = 0 \longrightarrow 0$ eg m D is line iff.

2=0 & (1-y) =0 2) x=0 l 1-y=0 =) x=0, y=1 -2 So, at (x=0,y=1), CR eque would be true smultaneously; Lo f(z) = $y_z + i y_z$ $y_z = y_z + i y_z$ $3x^2 + i(0)$ f'(z) = 3x2 only when z=0, y=1 Now, from (2), Z = 0 + 1 i = i. It is legitimate to write $f'(z) = 3x^2$ only when x = 0 by z = 1 i.e. z = 0 + 1 i z = 1Hence, from (2),

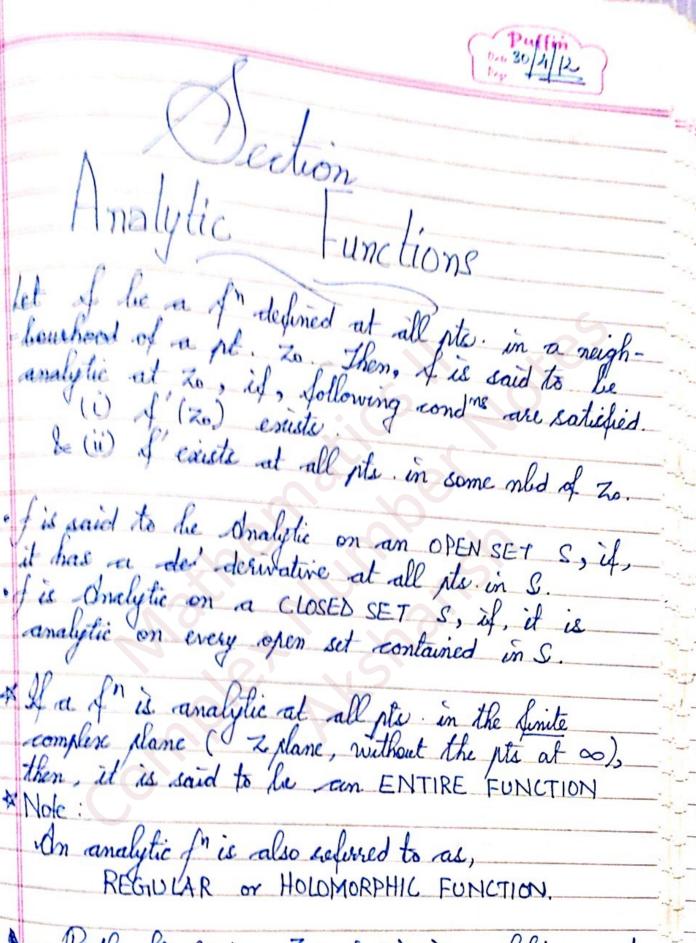




Clearly. Us = Vo and Vk = - Lo Le the CR eque are true + ptr. in 2 plane Le U. Ve Uo Le Vo are cto (270,060,271) Le U. Ve Uo Le Vo are cto (270,060,271) Le (1/2) existe at all its in 2 plane's clamain Le f(2) = e-o (Ue + i Ve) = e-@(-sn(lns)e-@ + i as(lns)e-@ ===== (sin(lnx) - icos (lnx) $f'(z) = ie^{-20} \left(\cos(\ln x) + i \sin(\ln x) \right)$ Let $v \in V$ denote the real f invaginary parts of the $f^{(z)} = (z)^2$, $z \neq 0$ (x-y2-2xyi)(x-iy)



12 Uy (0,0) = line U(0,h) - U(0,0) z lin = 0 -0 = Vx to,0) = lim V(h,0) - V(0,0) =) Vn = lûn 0-0 (0,0) Lto h So, the CR egre are true + pto the Find of (2) (0,0) at & show A (done before



it has a de derivative at all pts in S.

it is said to be shalptic on an OPEN SET S, if,

it has a de derivative at all pts in S.

f is shalptic on a CLOSED SET S, if, it is

analytic on every open set contained in S. If a f is analytic at all pto in the Sinite complex plane (Z plane, without the pts at ∞), then, it is said to be can ENTIRE FUNCTION An analytic for is also refused to as, REGILLAR or HOLOMORPHIC FUNCTION. ex. Deshe for $f(Z) = e^Z + sin(Z)$ is analytic everywhere in Z plane. Hence, its an entire for .

The for f(Z) = 1/2 is analytic everywhere in the complex plane except origin. Hence, its not an entire for

* Singular sointe: if the following cond ns are satisfied: (i) f is not analytic at to ex: The for f(x) = Z2+5 is no dolln't have a singular xt. The fn f(z) = 1 has a singular pt → zo ea: The singular its of $f(z) = \frac{z}{(z^2+9)(z^2-4)}$ are grien by denominator egn (z2+9) (z2-4)=0 $\Rightarrow z^2+9=0$ or $z^2-4=0$. $\Rightarrow z=\pm 3i$, ± 2 are singular pt. en: The for f(z)=|z|2 is NOWHERE analytic in the 2 plane, though, it has a derivative at the origin. Olso, it has no singular

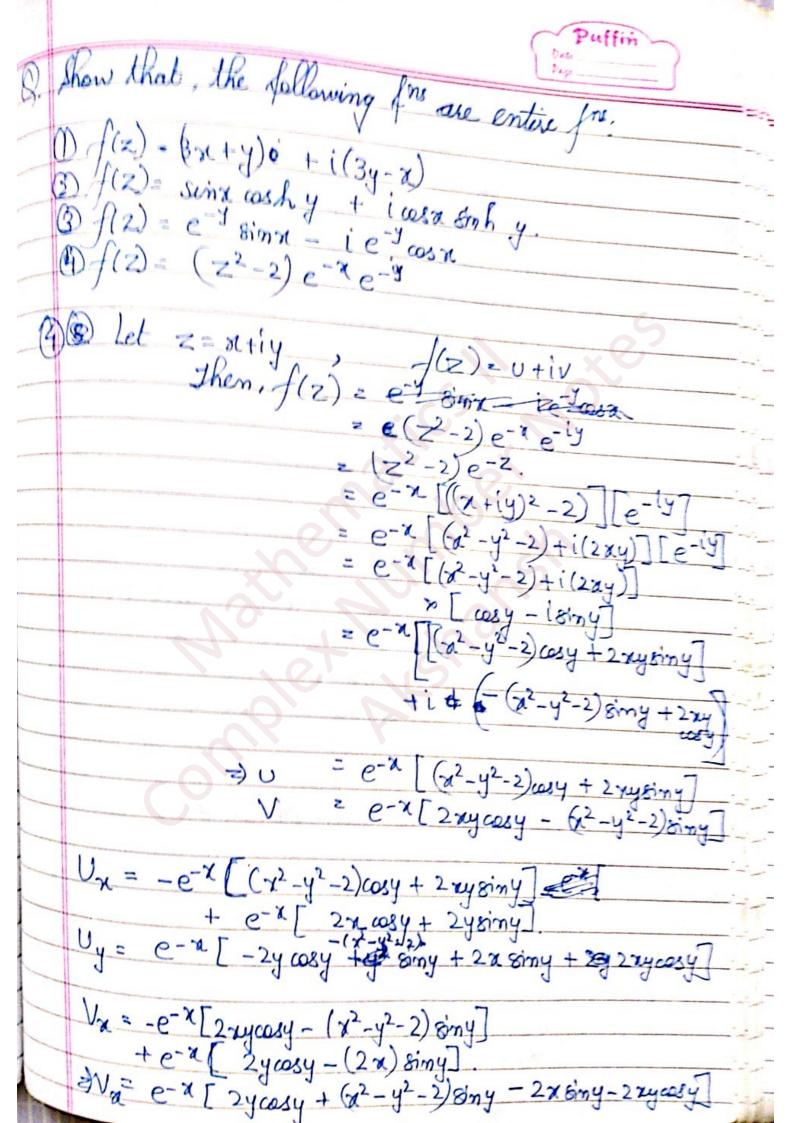
It in the 2 Name.

It show that a fin f is analytic at

a pt., we use the following fact:

The fin f(2) = U + iV is analytic at Zo if exists, are its, & satisfy the CR egns:

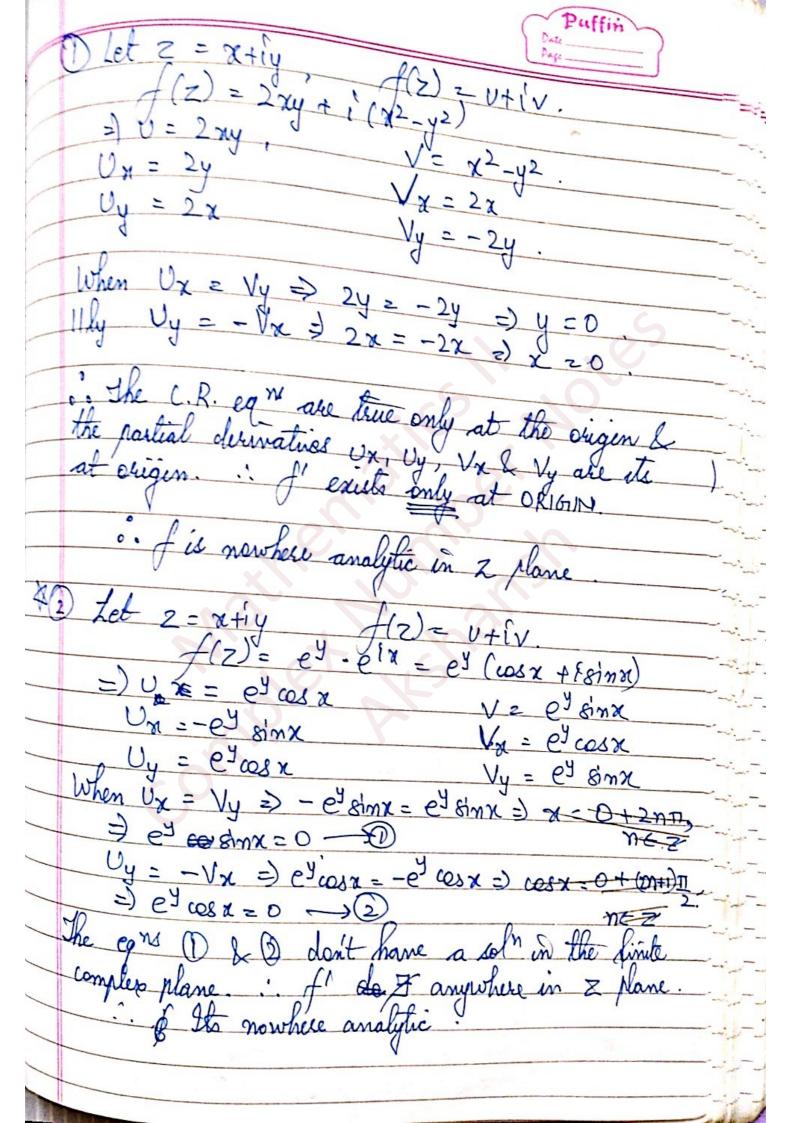
Ux = Vy & Uy = - Vn. The shore idea can be extended to polar form to



Vy = e-2[2xcosy - 2xysiny + 2ysiny - (x2-12-2) Here, $U_{\pi} = V_{y}$ & $U_{y} = -V_{\pi}$.

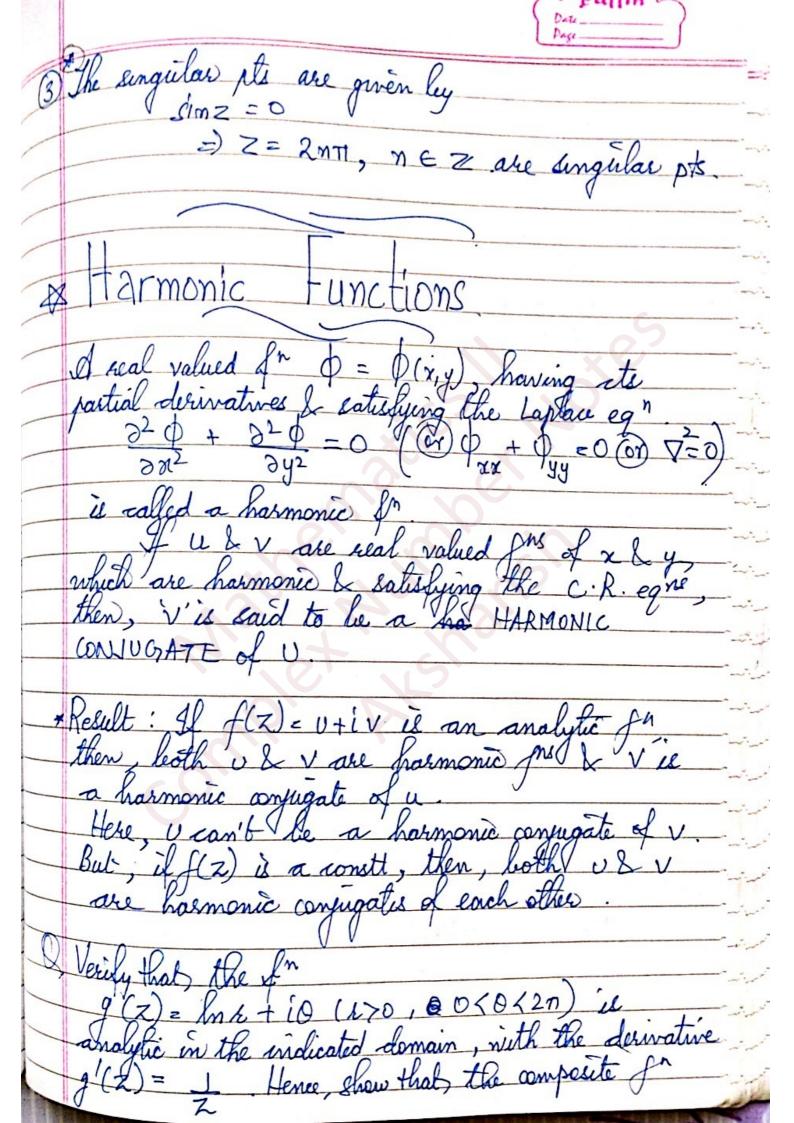
The C.R eque are satisfied at all plain
the complex plane &, these partial derivatives are
ats in that plane. Write .. I has a derivative throughout the finite them pt. by complex plane. Hence, its analytic throughout the Zplane. pt (3) Let z = x + iy f(z) = U + iyNow, $f(z) = e^{-y} \sin x - i e^{-y} \cos x$ $= -i e^{-y} (\cos x + i \sin x)$ $= -i e^{-y} (\cos x + i \sin x)$ $U = e^{-y} \sin x$ $y = -e^{-y} \cos x$ $U_{x} = e^{-y} sinx$ $V_{x} = e^{-y} sinx$ Here, $U_{\pi} = -e^{-y} \sin \pi$ $V_{y} = e^{-y} \cos \pi$ Here, $U_{\pi} = V_{y}$ b $V_{y} = -V_{\pi}$... The C.R egm are estistied \forall $\forall e$. in I plane & partial desiratives are ets. in that pla Hence, it's analytic throughout 2 plane.

I is an Entire fr Show that f is Nowhere analysis if $(D) f(Z)^2 2xy + i(x^2 - y^2)$ $(D) f(Z)^2 e^y e^y ix$



If f and a are analytic for at all pte in a domain b, then, (i) $f(z) \pm g(\overline{z})$ is analytic in). (ii) f(z) = g(z) is analytic in δ , c; complex count (iii) $c \cdot f(z)$ is analytic in δ , c; complex count (iv) f(z) is analytic at all ρ ts. where $g(z) \neq 0$ (9 of)(2) = 9 (f(2)) is also analytic if defined Q. Find the unquian at be state why the frie analytic everywhere except those pto ...

(D) $f(z) = \frac{2z+1}{2(z^2+1)}$ $f(z) = \frac{z^2 + 1}{(z+2)(z^2 + 2z+2)} = -2, -1 \pm i$ (3) f(z) = cot Z . , 2 mi, n = Z Oftz), being a sational diaction of rollinguals. Hence, the ungular to are given by $Z(Z^2+1)=0$ =) 2:0 or Z2+1:0 z > z = 0 or z = i, -i are unquient 2) Singular pts. are given by (z+2) (z2+2z+2) =0 z) z = -2 or $(2+1)^2 = 0$ =) 2=-2 or z=-1±1 are pt



g (2+1) is analytic in the quadrant x70,420; with the derivative 22 let z= heio. q(z) = u+iv. Gruen q(Z) = lnstio. =) U+iV = lns + 10 =) U= lns V= 0 =) Un = 1 Vo = 0 Vo = 1. Clearly, Vr = Vo & Vr = - Vo Lo, C.R eque are true & Z in the given domain I also, these partial derivatives are sto. Hence, its analytic.

By delin, g'(2) = e-10 [Un+iVa] = e-10[1 + 10] 2 | e-10 = 1 = 1 Re10 = Z =) q'(z) = 1 Let f(2) = 22+1 Show that f & analytic (: HW) at all pls. in the complex plane with Hence, (g of (z) = 9 (f(z)) is also analytic in the indicated domain, with the derivative

1)- (Y 174 - 174 HA THE TY (gof)(2) = 9' (1(2)) f'(2)
= 1(2) f'(2) 27 het a of be analytic in a domain D.

Prove: -(2) must be a conett in D if

(i) -(2) is real valued of Z in D

(ii) -f(2) is analytic in D

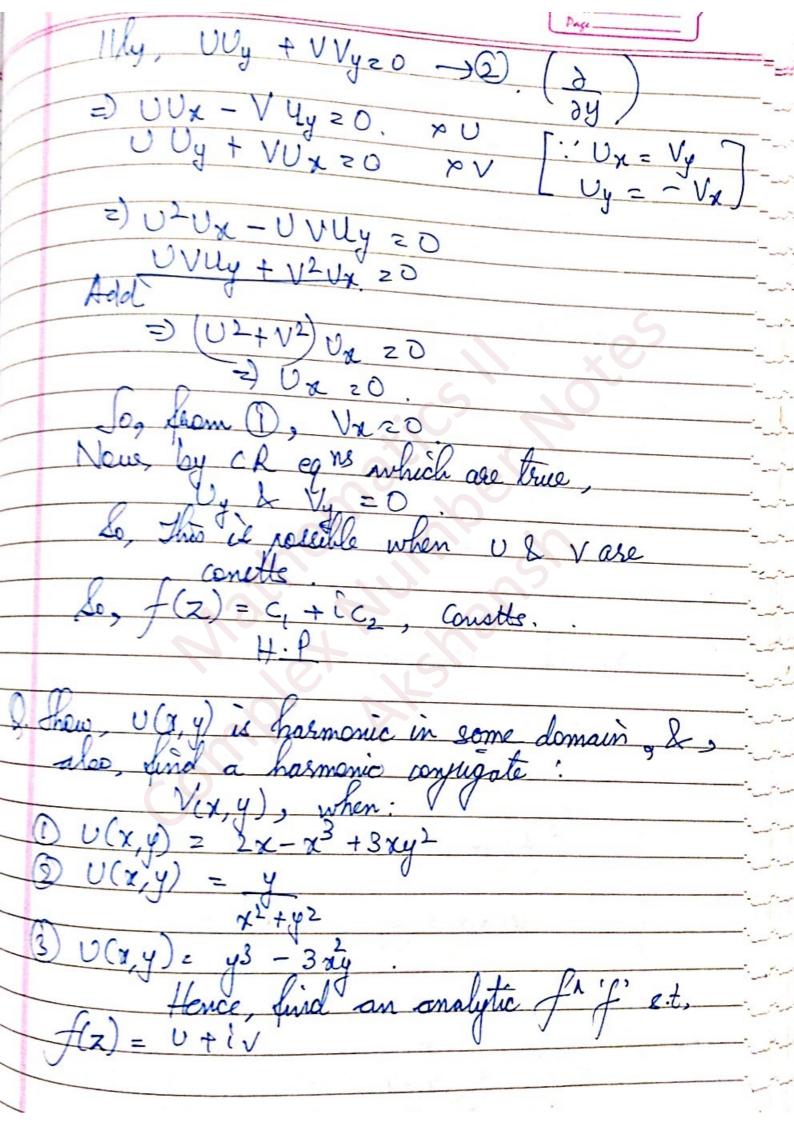
(ii) -1(2) is someth in D. 1 1 " see " 1000 Then, both U & V satisfy the CR eque, namely, J. J. When fit real valued fr in D, then, 2) VX = 0 & Vy = 0

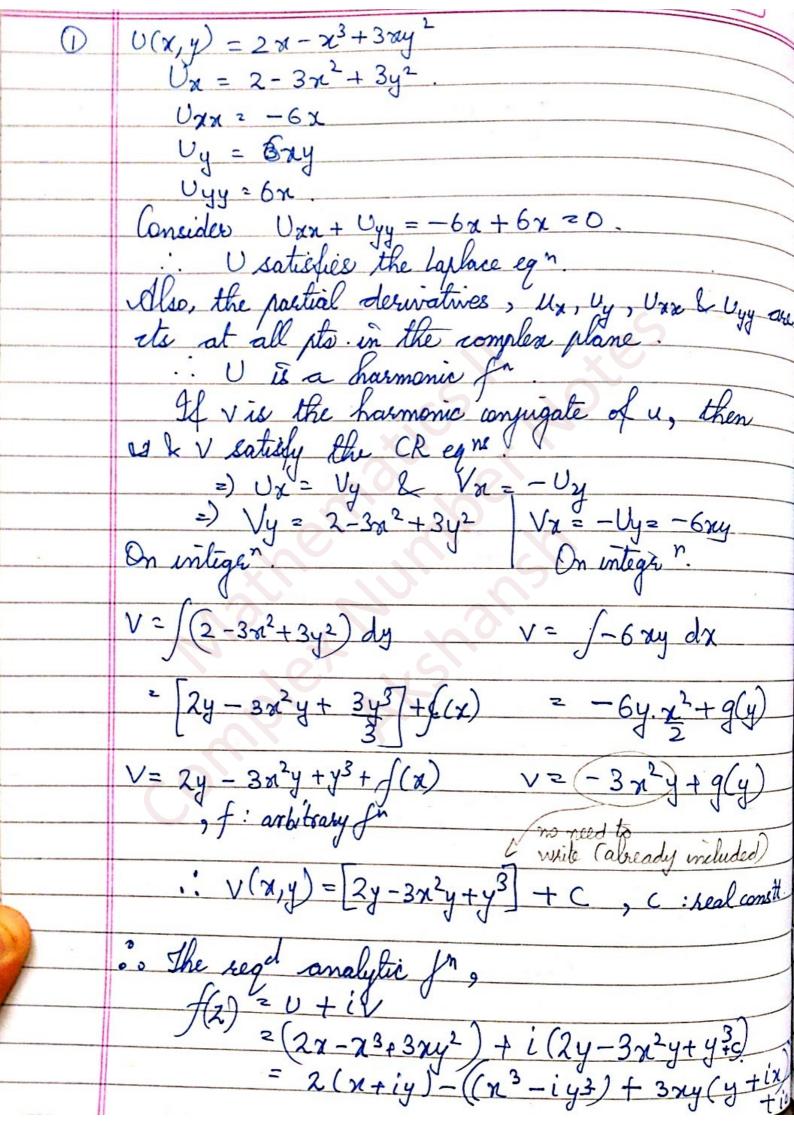
2) Vx = 0 & Uy = 0 (From (D.)

3) Up = c, a constt. =) f(z) = 0.0 + 00 = c + i(0) = c, a constit.Let f(z) = (u+lv) = u-lv = P+iQbe analytic in D 2P = u, Q = -v gatzly $CReq^{m}$. $2P_{x} = Q_{y}$, $P_{y} = -Q_{x}$ $2P_{x} = Q_{y}$, $P_{y} = -Q_{x}$ --and and any --

J Dx = Vy = - Vy =) Vy =0 DV0 20 =) Uy = - Vx = Vx = 2 2 Vx = 0 =) Vx = 0 & Uy 20, =) U= C1, V= C2, C, 3C2 are const. =) f(2) = U+i y= C1+iC2, a const. f12)20+1V 1/(2) 1 102+12 Un = Vy , Vn = -Uy (iii) MI :: If(z) = conetant, we J(Us+4) + (1x+4) If(2) = c J(D-4-V7) + Vx+U2) =) Uf(z) = c2. $f(z) + (z) = c^2$ $=\int_{0}^{\infty} f(z) = \frac{c^{2}}{f(z)} - \frac{1}{3} \int_{0}^{\infty} \int_{0}^{2} |V_{x}|^{2} + \frac{1}{3} \int_{0}^{\infty} \int_{0}^{2} |V_{x}|^{2} + \frac{1}{3} \int_{0}^{\infty} \int_{0}^{2} |V_{x}|^{2} + \frac{1}{3} \int_{0}^{2} \int_{0}^{2} |V_{x}|^{2} + \frac{1}{3} \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} |V_{x}|^{2} + \frac{1}{3} \int_{0}^{2} \int$ =) Ux2 + Vx2 = 10-(ase (1) Af (foz)) = 0.
Then, its a conett already. So, proof is already done Case 2 If (f(z)) \$0.

Then, both numerator & denominator of the eq' (3) are analytic in D. Herre, by part 2 of the above, f(z) must be a constt. in I M2 H(z) = c2 = U2+ V2 z() =) 2UUx + 2VVx =0 $\rightarrow 0$ = U.Ua + VVx 20





$$\int (x)^{2} = 2(x+iy) - (x+iy)^{3} + iC.$$

$$\Rightarrow \int (z) = 2z - z^{3} + iC.$$

$$0(x,y) = \frac{1}{2}(z^{2}+y^{2})(2x) - y(2x) = -2xy}{(x^{2}+y^{2})^{2}}$$

$$0x = (x^{2}+y^{2})(-2y) + 2xy(2)(x^{2}+y^{2})(2x)$$

$$(x^{2}+y^{2})^{4} = 2(xy)(x^{2}+y^{2})(2x)$$

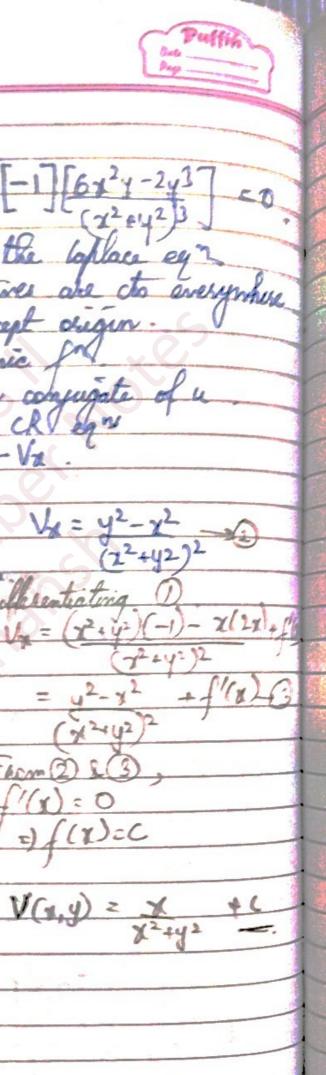
$$(x^{2}+y^{2})^{4} = 2(xy)(x^{2}+y^{2})(2x)$$

$$(x^{2}+y^{2})^{4} = 2(xy)(x^{2}-x) + 2y^{3}(1+4x^{2})$$

$$0x = 2(xy)(x^{2}-x) + 2y^{3}(1+4x^{2})$$

$$0x = 2(x^{2}+y^{2})^{2}$$

$$(x^{2}+y^{2})^{3}$$

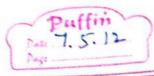


Also, the in a control directives are to everywhere the complex plane, except origin. then u & v entirely the CRI of u

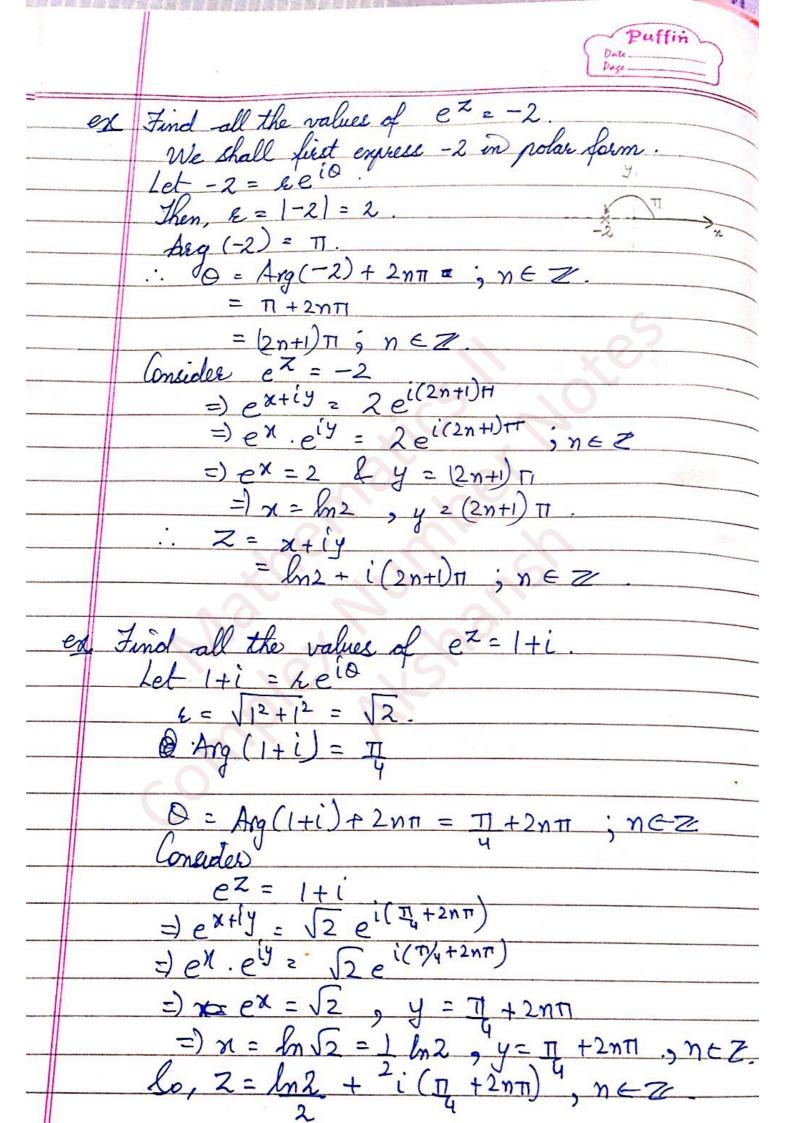
Che = If L Uy = - Va. $\frac{z-2}{\chi^2+4^2}+f(\chi)$

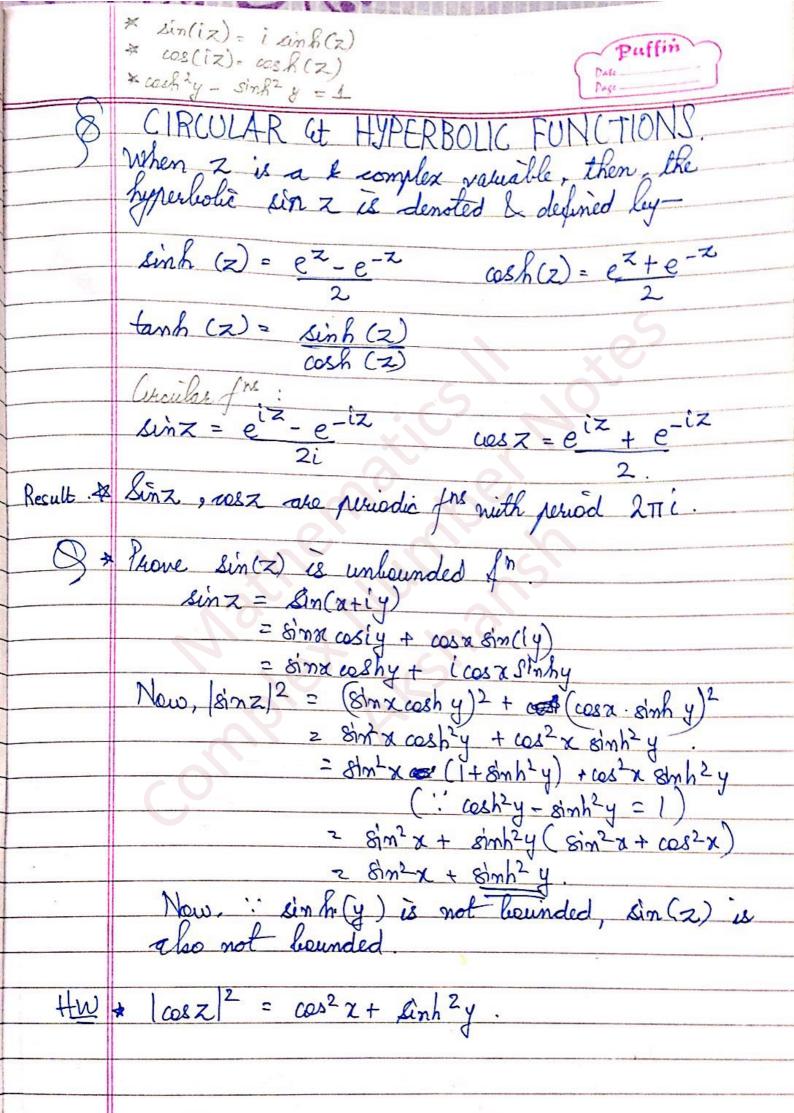
longate Unx + Ung

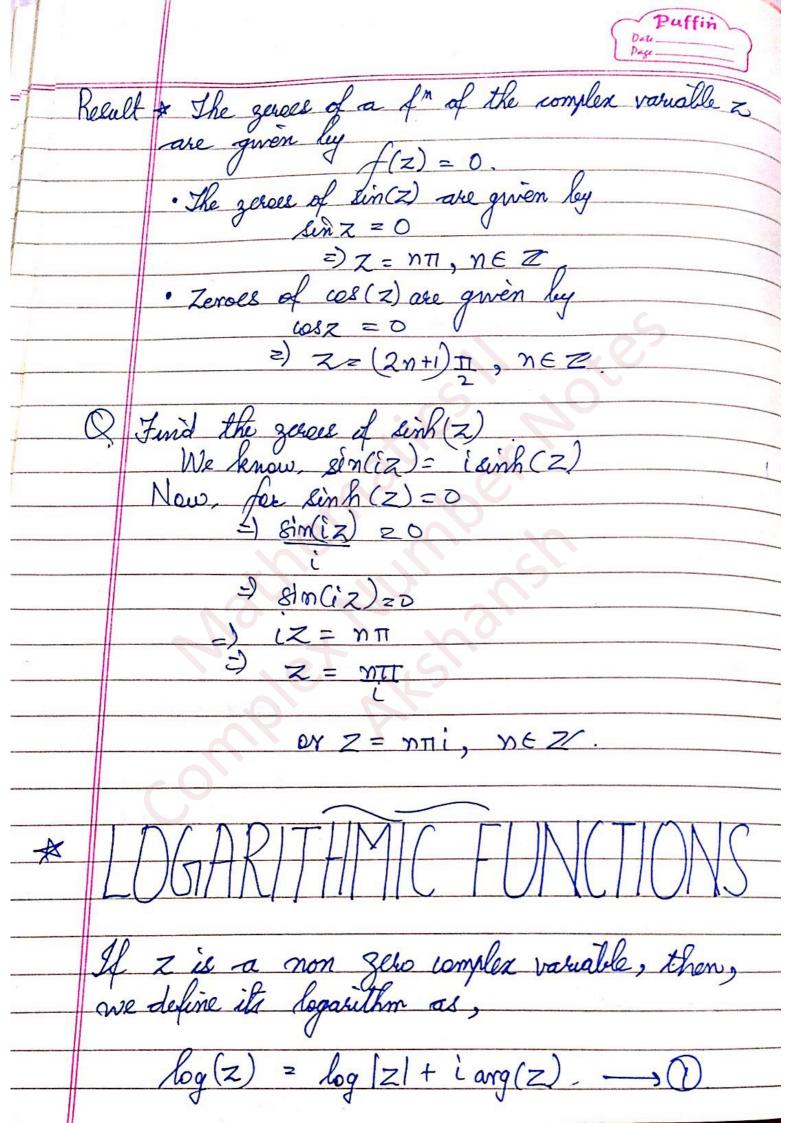
	-
Dea Puffin	
to find f(z) = v+iv (an analytic fr).	==:
-(z) = U+iV	
2(y) +i(x)+ic	
= 4 + i	
22+42	
= i (x - iy)	
= (x+ig)(x-ig)	
(x+iy)	
= 2f(z) = L + iC.	

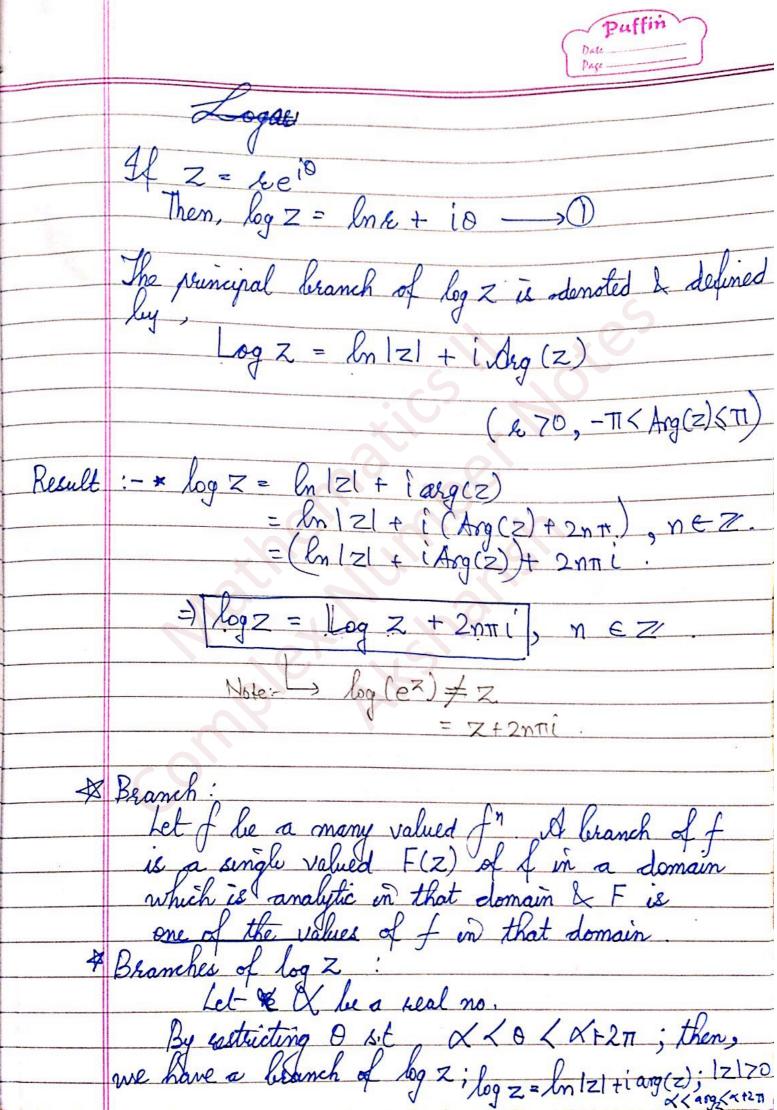


Chapter-3 LEMENTARY FUNCT The Exponential Function * If z is a complex variable, then, we define, the exprenential fr as * $exp(z) = e^z = e^{x+iy}$ = ex (cosy + istmy) * RESULTS: Let ez = geib =) extiy = geib =) extiy = geib =) } = ex =) |ez = ex () = ang(ez) = y+2nti, nEZ. 2. When is a real variable, then, en can never be -ve. On the other hand, ez can take -ve values. et is a periodic for with a period 2 Ti. 4. For any 2 complex nos. Z_1 by Z_2 , (i) $e^{Z_1}e^{Z_2}=e^{Z_1-Z_2}$.

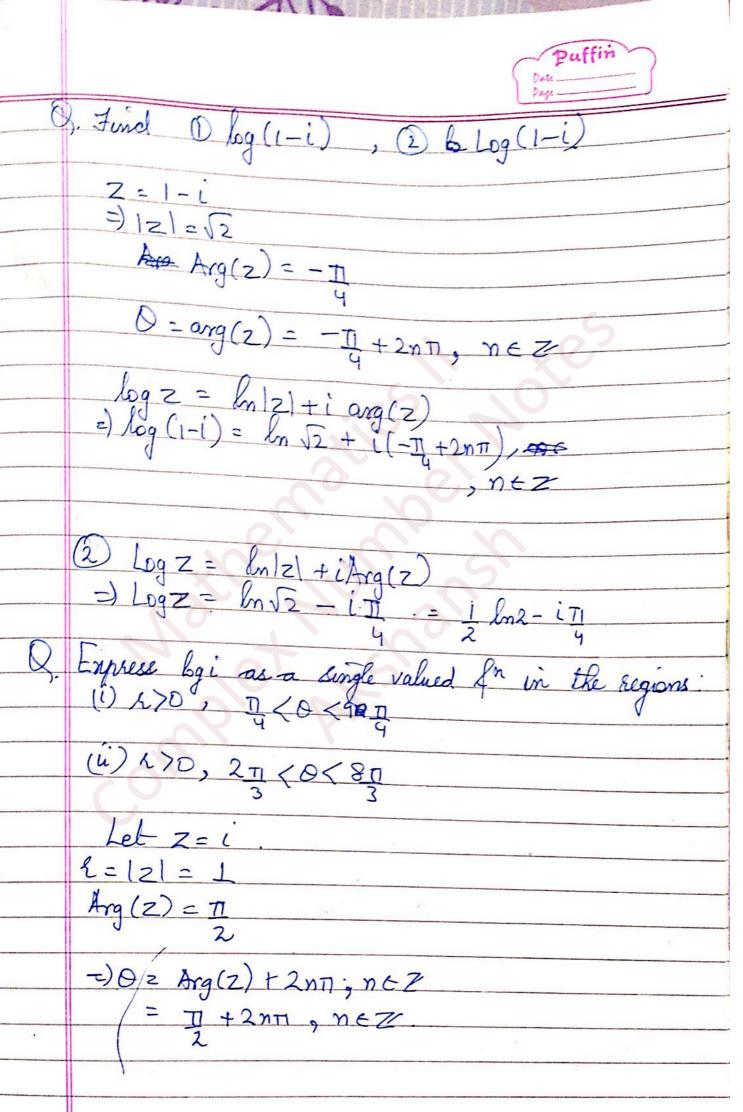








log z = ln |z| + i arg(z). L> 2>0, << arg(z)<<+2π or log z = ln x + i0 $(k>0), << 0 < < +2\pi$ here of = & is solled a Branch cut & the oligin is called Branch pt. which is congress + branch with Q. Find: (1) log 1 (2) log (-1) (3) Log (-1) Let Z=1 Then, &= 121=1 Arg = Arg (10) 20. ang (2)=0-Ang (2)+2nn, nez =)0 = 2ntl; n < Z. log Z = lon/21 + i ang(2)
= log1 = ln/ + i(2ηπ)
= 2ηπί η η ΕΖ (3) log z = ln|z|+i Arg(z) =) log 1 = ln(i) +i0. = 0+i0



$$=\frac{\pi}{2}-2\pi=-270^{\circ}, n=-1$$

Only,
$$Q = \frac{\pi}{2}$$
 his in green range.

$$\begin{array}{cccc} \vdots & \log z = \log |z| + i \operatorname{arg}(z) \\ = & \log i = \ln (+i) \end{array}$$

(ii)
$$R70, 2\pi < 0 < 8\pi$$

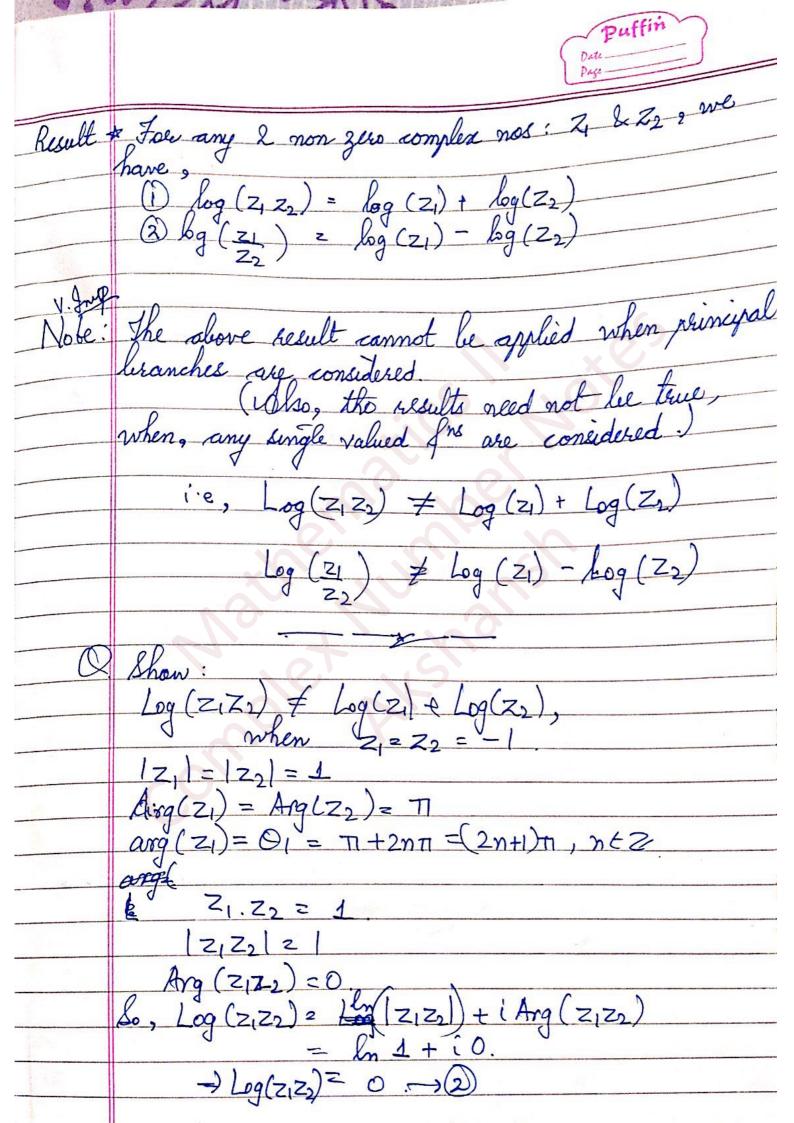
$$8 = \pi + = 90^{\circ} \qquad n = 0$$

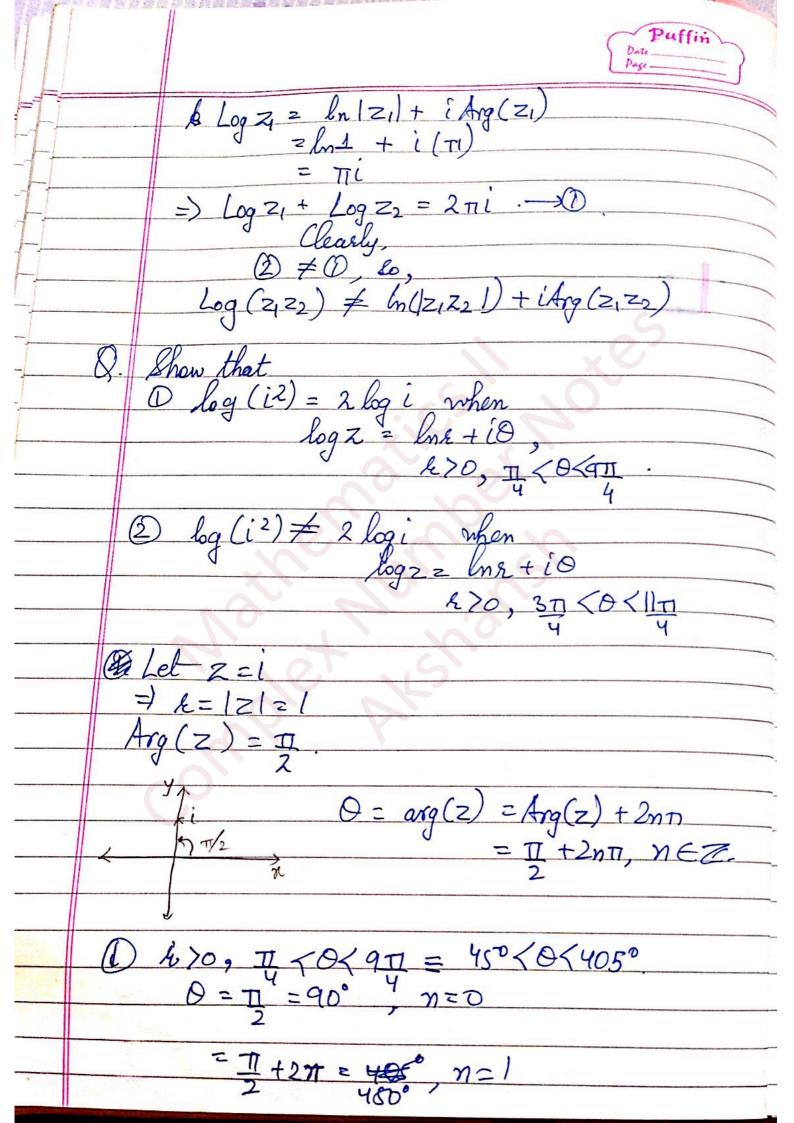
$$R70, 120^{\circ} < 0 < 480^{\circ} \qquad = \pi + 2\pi = 450^{\circ} \qquad n = 1$$

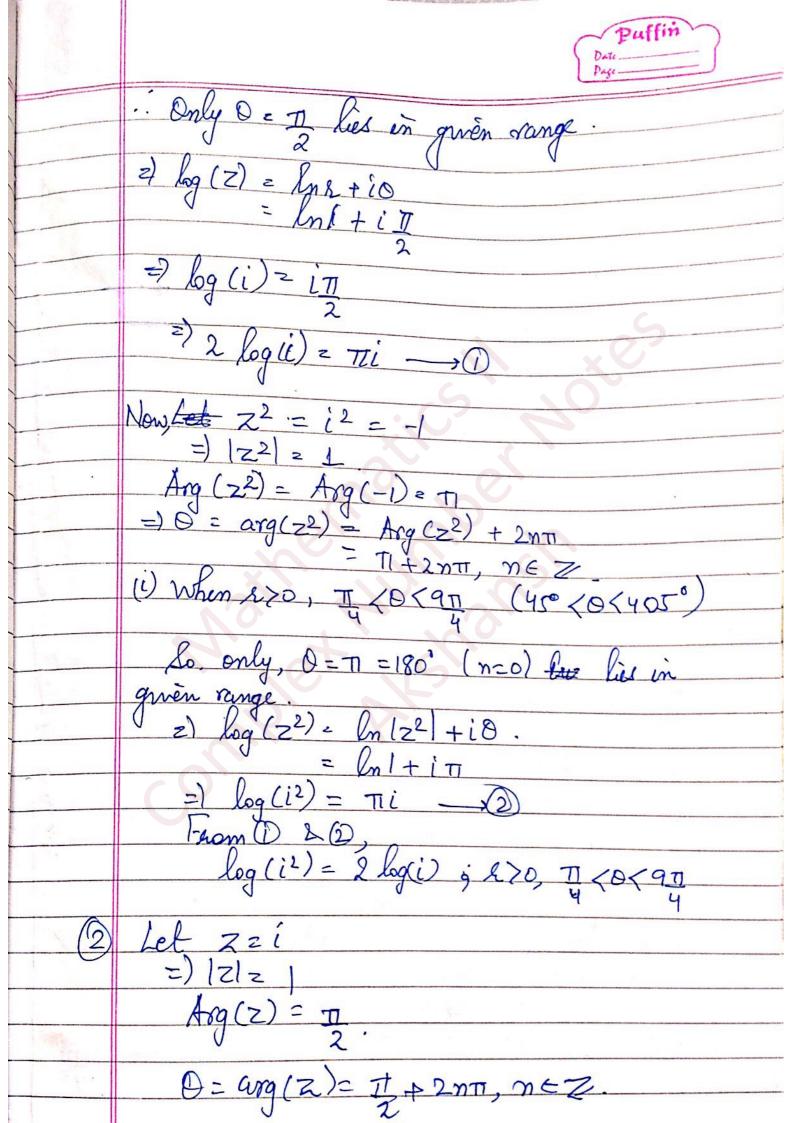
$$= \pi - 2\pi = -270^{\circ} \qquad n = -1$$

$$= \pi - 2\pi = -270^{\circ} n = \frac{1}{2}$$
. Only $0 = 5\pi = 450^{\circ}$

$$k70$$
, $120^{\circ} < 0 < 480^{\circ}$ | $\frac{11}{2} + 2\pi = 450^{\circ}$
 $= 11 - 2\pi = -270^{\circ}$
 $= 11 - 2\pi = -270^{\circ}$
 $= 100^{\circ} < 0 < 950^{\circ}$ | $= 100^{\circ}$ | $= 10$







For 270, 8 37 (0 < 117 = 1350 < 0 < 495

Q = 1] = 90°, n=0

= 1 +271 = 450°, n=1

Lo, only 0 = 450° = 57 lies in the given range

k log Z = ln | 2 | + i.0 = ln(1) + i(57)

=) log i = 5πi/2 =) 2 log i = 5πi → ①

New, 22 z i2 = -1

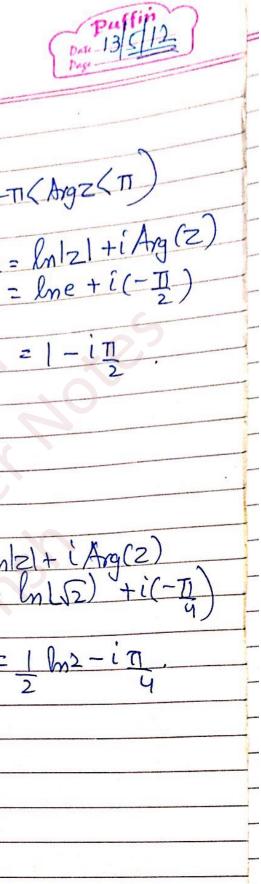
Arg $(Z^2) = \Pi$. So, $\theta = arg(Z^2) = \Pi + 2n\pi$, $n \in \mathbb{Z}$.

O= T = 180°, M=0

TI Satisfies grien range

log(Z2) = (m/Z2/+i0

So, log (i²) = 2 logi ; 200, 30 (0(110)



1 Log (-ei) = 1- mi (2) Log (1-i)= 1 ln2- Ti (870, -TKAngZKT) Let |z| = -ei : $|z| = \ln|z| + i \operatorname{Arg}(z)$ |z| = R = e = $\ln e + i(-II)$ Logz = ln/z/+ i Arg(z)

=) Log(1-i)= lnL\(\overline{\pi}\) +i(-Ti =) Log(1-i) = 1 ho2 - in Verily for n=0, ±1, ±2 $\log i = (2n+1)\pi i$ $\log i = (2n+1)\pi i$ $\log (-1+\sqrt{3}i) = \ln(2) + 2(n+1)\pi i$ Arg(2)=0 => 0 zarg(2) 2 2mm, n6

$$L_{g}(z) log(z) = ln|z| + iang(z)$$

 $log(e) = lne + i(2nn), ne z$
 $= log e = 1 + 2nni, ne z$

$$Arg(z) = 2\pi = 0 = arg(z) = 2\pi + 2n\pi, nez$$

So,
$$\log(z) = \ln(z) + i \arg(z)$$

 $= \ln(z) + i (2\pi + 2n\pi), \quad n \in \mathbb{Z}.$

(i)
$$Log(1+i)^2 = 2 log(1+i)$$

(i) $Log(-1+i)^2 \neq 2 log(-1+i)$

$$\log(z) = \ln|z| + i \operatorname{Arg}(z)$$

$$= \ln \sqrt{z} + i \left(\frac{\pi}{4} \right) = \lim_{z \to \infty} 2 + i \frac{\pi}{4}$$

$$= 2 \ln \sqrt{z} + i \left(\frac{\pi}{4} \right) = \lim_{z \to \infty} 2 \ln z + i \frac{\pi}{4}$$

$$\frac{2}{2} \log (1+i) = \ln 2 + i \pi \qquad \rightarrow 0$$

Let
$$z^2 = (1+i)^2 = 1-1+2i = 2i$$

$$Arg(z^2) = 2$$

 $Log(z^2) = 7$

=)
$$|z^{2}| = 2$$

Arg $(z^{2}) = T$
... $\log(z^{2}) = \ln|z^{2}| + i \operatorname{Arg}(z^{2})$
=) $\log(1+i)^{2} = 0$

$$= \frac{1}{2} \log (1+i)^2 = \ln 2 + i \cdot \frac{\pi}{2} - 2$$

$$= \log(z) = \ln|z| + i \operatorname{Arg}(z)$$

$$= \ln\sqrt{2} + i \frac{3\pi}{4} = \lim_{q \to \infty} 2 + i \left(\frac{3\pi}{4}\right)$$

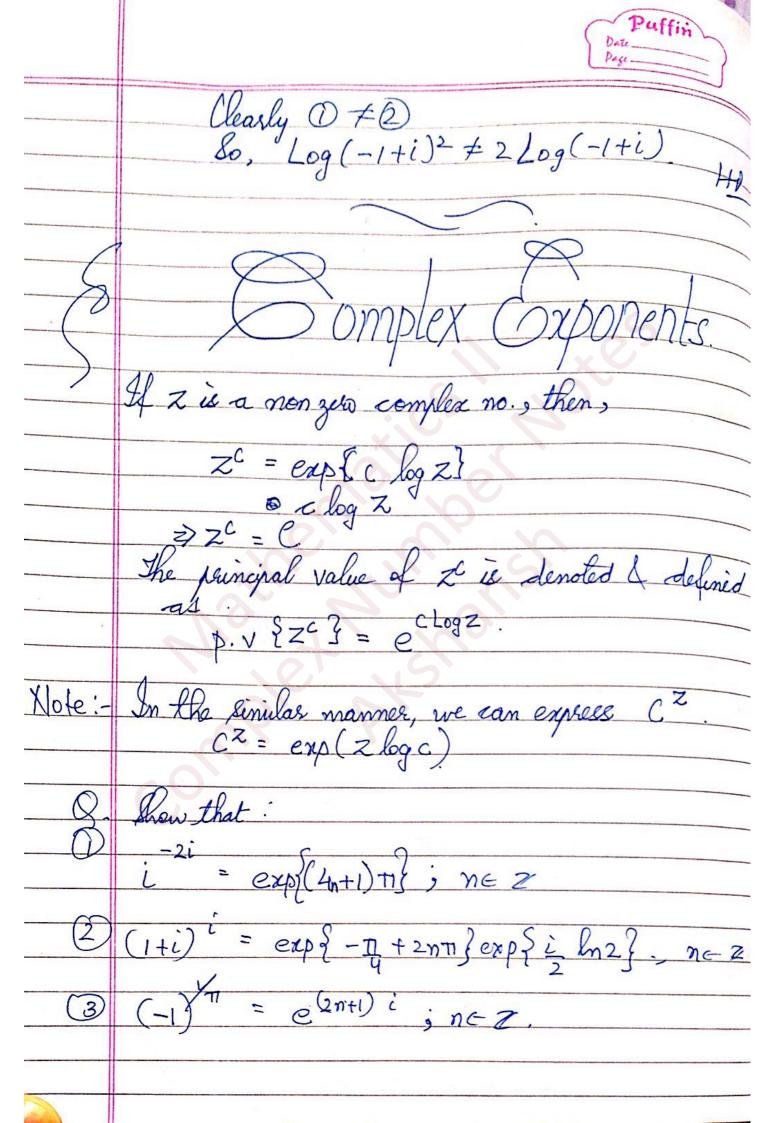
$$3) 2 \log(-1+i) = \ln 2 + i(3\pi) \rightarrow 0$$

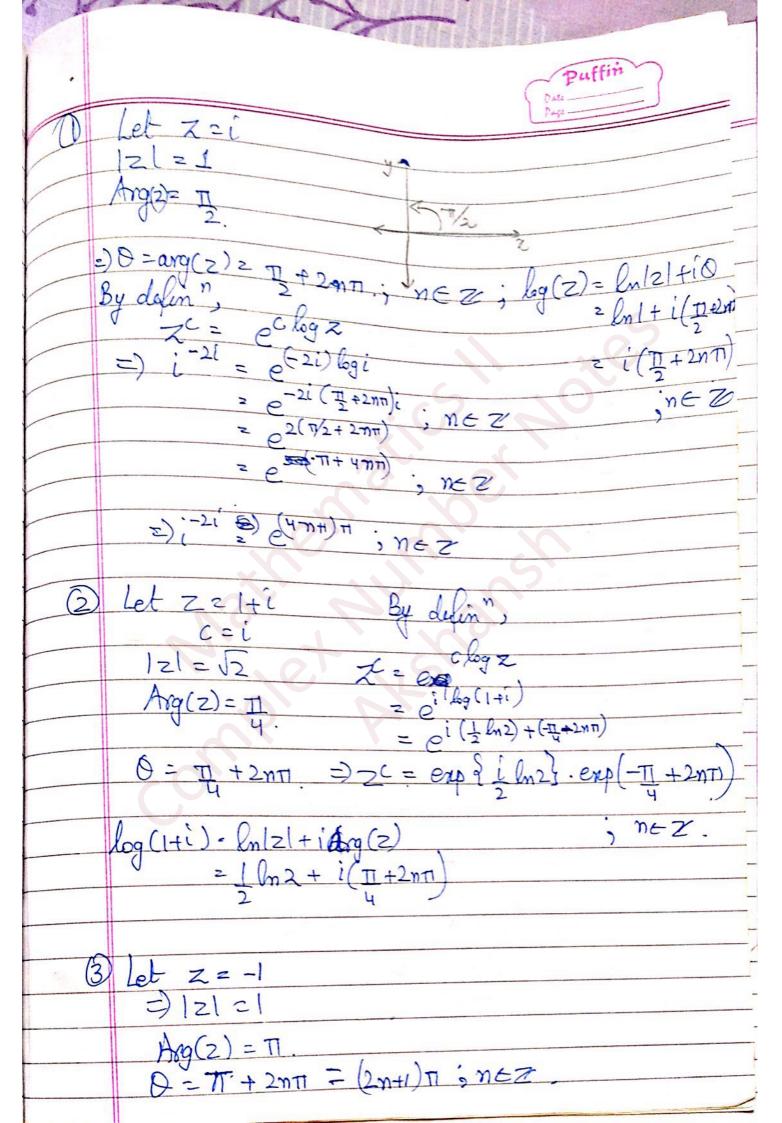
Let
$$Z^2 = (-1+i)^2 = 1-1-2i = -2i$$

$$\frac{1}{2} |z^2| = 2$$

$$Arg(z) = -\frac{1}{2}$$

$$Log(z^2) = ln(|z^2|) + i Arg(z^2)$$
 $= ln 2 + -i H$





Puffin

Z = exp(c log Z)

z e clog Z

z e log i

z e l log i

z e l (i(2n+1) ll)

z e l (i(2n+1) ll)

= 2 C = e(2n+1) i

Find the principal value of

p.v {(-i)i}= e7/2.

Let z= e(-1-13i) = e(2) = e Ang (2) = 27 $\frac{\log(z)}{2} = \ln|z| + i \log(z)$ $= \ln z + i \left(\frac{2\pi}{3}\right) = \left(\frac{2\pi}{3}\right)$ Now, Z = 3mi Log(z) = e 3ni . & 2nd $= \frac{1}{2} \sum_{i=1}^{2} \frac{e^{-e_{i}} e^{-e_{i}} e^{-e_{i}}}{2^{2} + 2^{2}} = \frac{1}{2} e^{-e_{i}} e^{$ (3) ZC 2 e 4i Zog(z) = e4i (\frac{1}{2} lm2 - i \frac{11}{4}) = e^2i lm2 . e 11. =) ZC = eap(2iln2). exp(TI) =) p.v { (1-i)4i} = e71+&m2)i = - (2 m2)i

Show: $\frac{1}{-1+\sqrt{3}i}$ = $\pm 2\sqrt{2}$ Let $z = -1+\sqrt{3}\hat{i}$ Ar Arg(z) = +III O = arg(z) = +2II + 2nTIlog(z) = ln/z) + i0 = ln2 + i(+21 + 2nTT) 2 = e clog(z) = = = (ln2 +(en (+2) +2nn)i) = 3/2 ln2 3 i (+211 +2n11) $= e^{3/2 \ln 2} \cdot e^{i \pi} \cdot e^{i(3-n\pi)}$ $= (2^{3/2}) \cdot (-1) \cdot e^{i(3n\pi)} \cdot n \in \mathbb{Z}$ $=(-2)^{3/2}e^{i(3n\pi)}=(+2)^{3/2}e^{3n+i}$ $= (-2)^{2} (-2) (-1)$ $= (-2)^{3/2} \{ (08(3m+1)\pi + i 8im(3m+1)\pi \}$ $= 2\sqrt{2} (-1)^{3n+1}$ $= 2\sqrt{2} (-1)^{n+1}$ $= 2\sqrt{2} (\pm 1) [:(-1)^{3n+1} = \pm 1]$ $= 2\sqrt{2} (\pm 1) [:(-1)^{3n+1} = \pm 1]$

No.	Puttin
	Date
	Page
	Do Hart.
Q.	Dhow week.
Hus	Show that: (1) Log (-ei)= 1- Thi
The state of the s	
Donefore	2 Log (1-C)= 1 ln2- II i
100	4

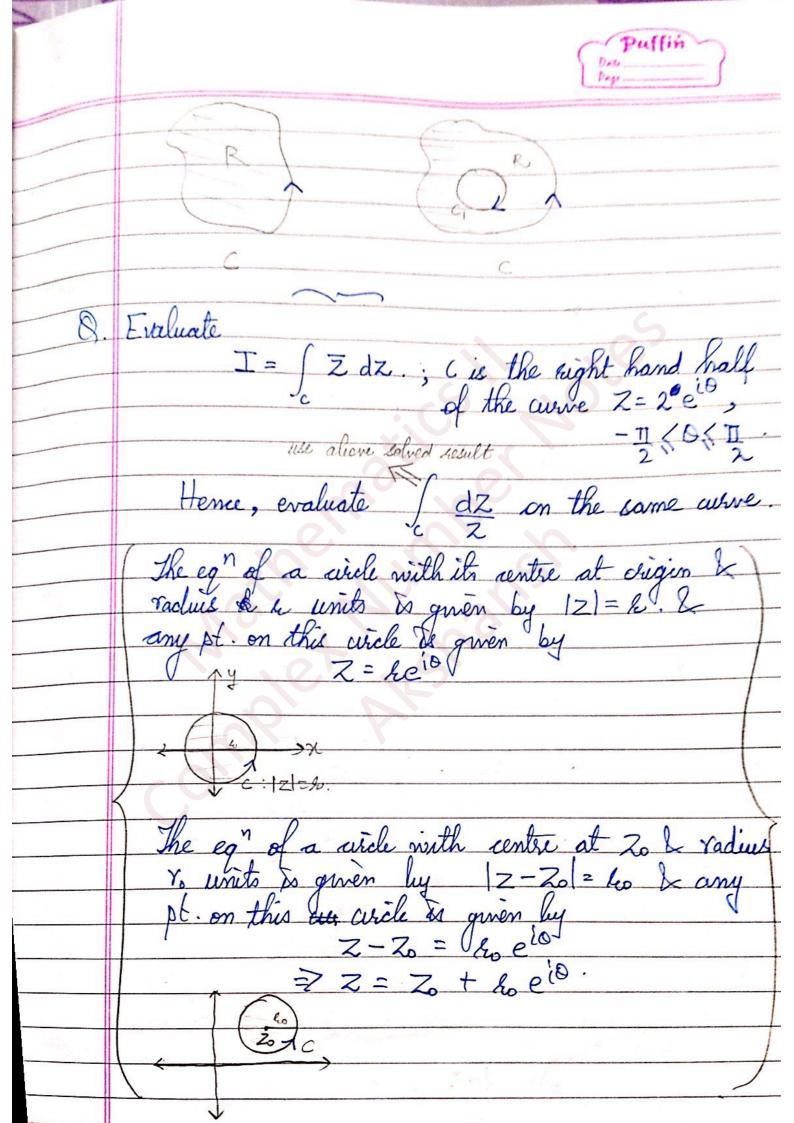
* For stinding +ve dis " for a does d'acrese : Date 14 512 move along the boundary set, the region is Termode your left Let w(t) = u(t) + i v(t), a & t & b, be, a complex valued f". Then, $\int w(t) dt = \int v(t) dt + i \int v(t) dt$ $+ = a \qquad + = a$ Note: - Ref = Re(web) dt 2. & Im [w(t)dt] = f Im(W(t)) dt | Sweet dt | | weet dt An arc et a œuve in the complex plane is given ley: $Z(t) = \chi(t) + i(y(t)); a \leq t \leq b$ $(\chi(t), y(t))$

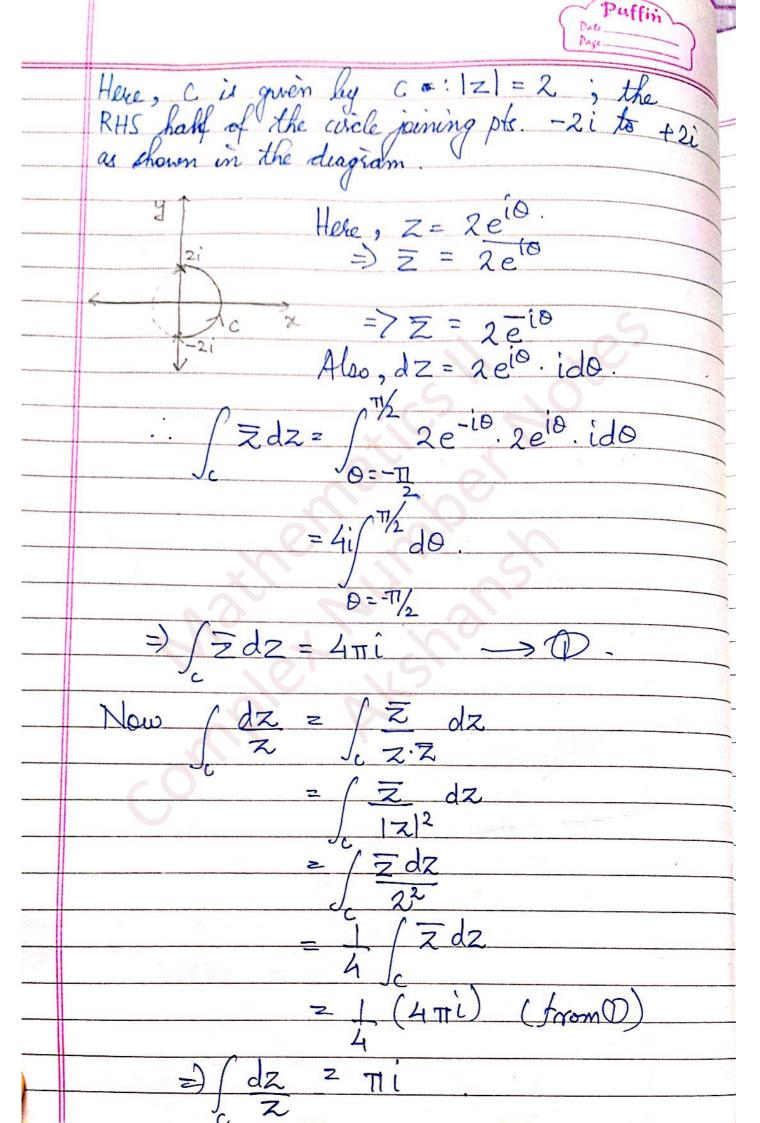
Sup.
S.t. x by are its for of t: a Jordon curve (or Jordon Arc) Simple arcs joined from end to end. It is said to be simple if it doesn't cross itself. The length of a simple owne Zet) = X(t) + i y(t), a(t 5 b is given by L= 16 Z'(t) dt. Let f(z) be a complex valued for defined at all pts. on a smooth curve - Z = Z(t), a $\leq t \leq b$, represented by curve c, then, $\int f(z)dz = \int f(z(t)) \cdot z'(t) dt$ /* expecsing integral in terms of parameter t*

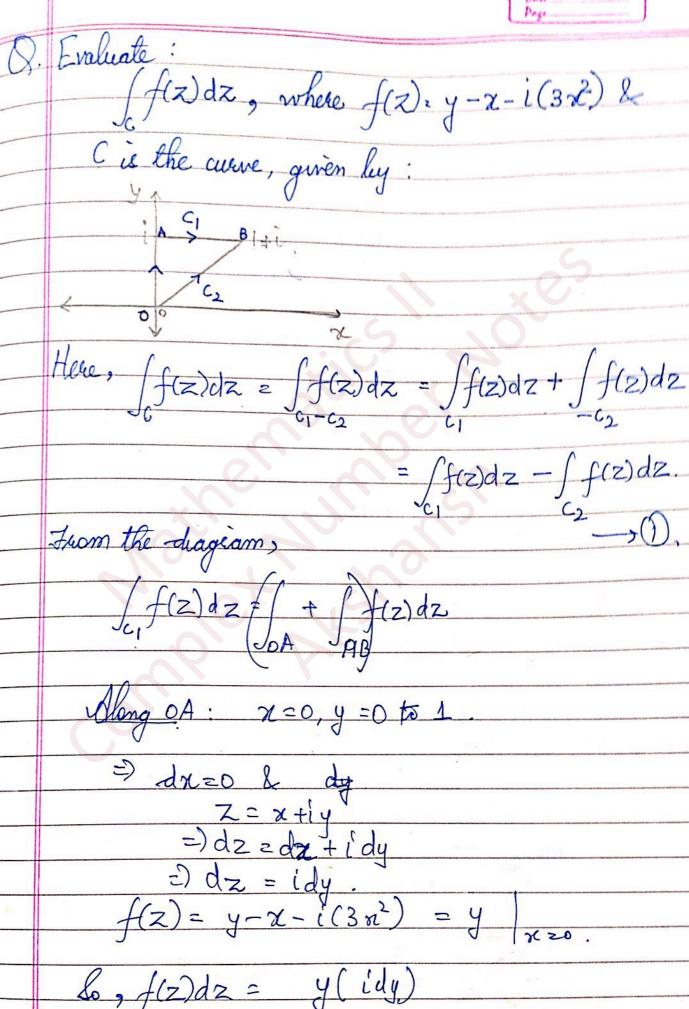
* RESULTS $\int_{C} \left[f(z) + g(z) \right] dz = \int_{C} f(z) dz + \int_{C} g(z) dz.$ 2 $\int_{c}^{z} Z_{o} f(z) dz = Z_{o} \int_{c}^{z} f(z) dz$; & Z_{o} : comett $3 \int_{-c} f(z) dz = - \int_{c} f(z) dz.$ ML. [NEQUALITY

If f(z) is a levery st. on a simple curve G, i.e., bound of f(z).

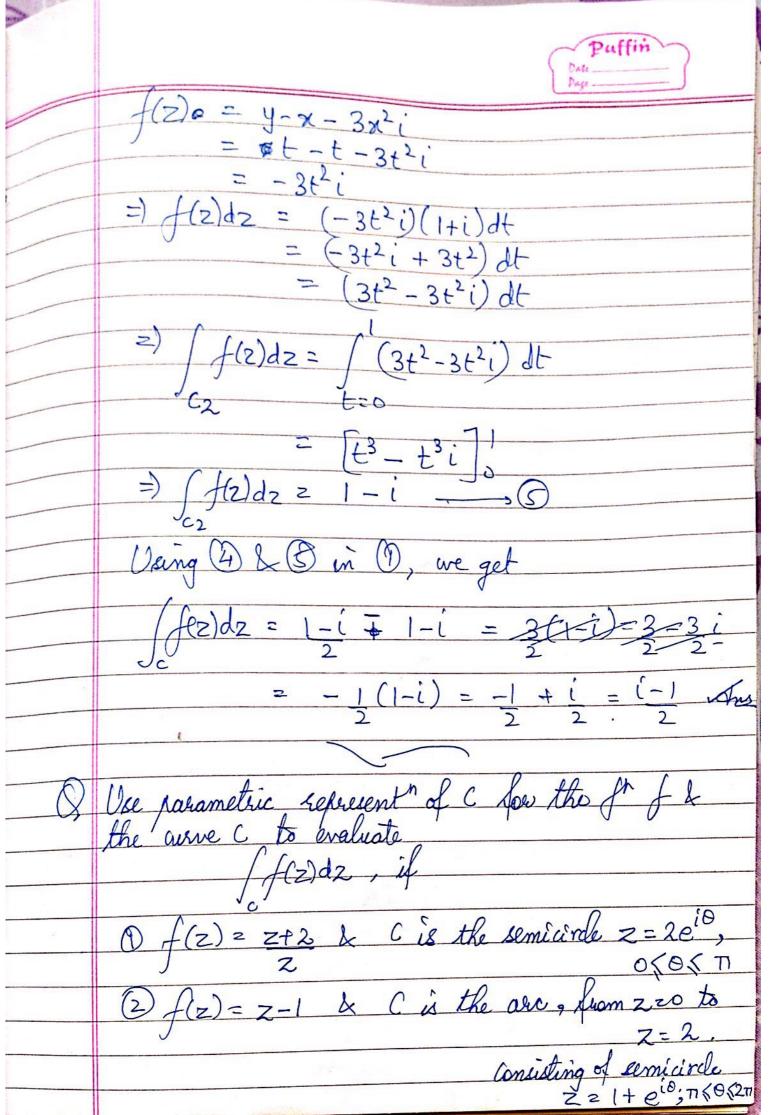
If f(z) | f(z) | f(z) on G, /f(z)dz / ML , where L is the length of the curve C. 5 (f(z)dz = f(z)dz + f(z)dz + i where, C = C1 + C2 +-If C is a smooth curve, then, the increasing dir is the +ve dir segion R, then, the +ve dir is that dir through which one walks, finds the region R to his LEFT.







:. \f(z)dz = \frac{yidy}{2idy} = i \frac{y27}{2} = \frac{1}{2} \fr Along AB. y=1, x=0 to 1 dy=0. 2 = x+iy = dz = dx+idy = dz = dx. $f(z) = y-x-i(3x^2)$ $= f(z) = 1-1(x+i3x^2)$ =) f(z)dz = (1-x-3in2) (dx) -) | f(z)dz = / (1-x-3ix2) dx $AB = \sqrt{x=0}$ $= \sqrt{x-x^2-ix^3}$ $= \left(1 - \frac{1}{2} - i\right)$ =) /f(z)dz= 1-i -3 -: $\int f(z)dz = \frac{1}{2} + \frac{1}{2} - i = 1 - i$ Along Cz x-0 = y-0 = t =) x=y=t; t=0 \$ 1 dz = dx + idy zdf+idt z (1+i)dt



(3) $f(z) = \pi \exp(\pi z)$ where C is the leoundary of the sq. with vertices 0,1,1+i,i & the owent" is in the +ve dir".

(4) $f(z) = \int 1$, y < 0 l < y, y > 0& C is from z = -1 - i to z = 1 + i along the write $y = \chi^3$

Gurên $Z = 2e^{(0)} \Rightarrow C: |z| = 2.$ $dz = 2(i0)e^{(0)}; 0 < 0 < T$

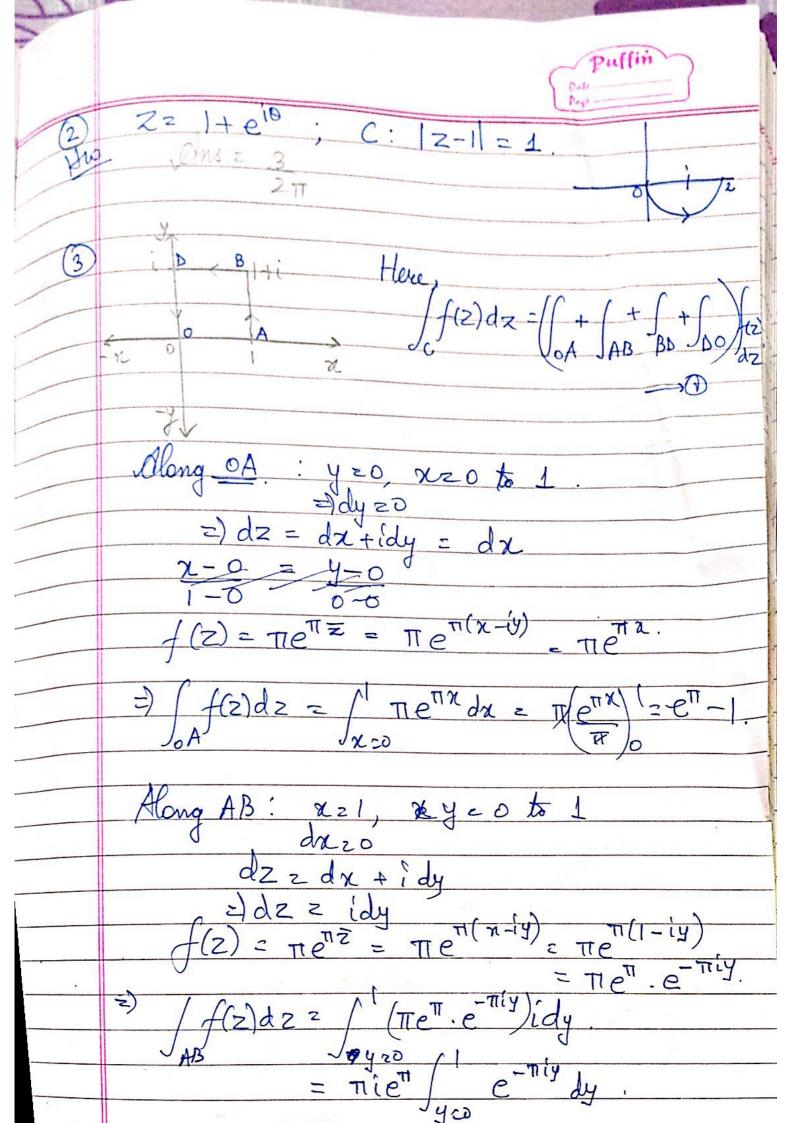
 $f(z) = z+2 = 2e^{iQ}+2 = e^{iQ}+1$ $z = 2e^{iQ}+2 = e^{iQ}+1$

=) $\int f(z)dz = \int_{0=0}^{\infty} \frac{e^{i0}+1}{e^{i0}} (2e^{i0}) id0$ = $2i/\pi (e^{i0}+1) d0$.

[elo + 0]TI

 $= \left(2\frac{\dot{\chi}(-1)}{\dot{\chi}} + 2\pi i\right) - \left[2\frac{\dot{\chi}(1)}{\dot{\chi}}\right]$

2 -2+11-2 =2TTi-4



Puffin = Thie -e" (f(z)dz = 2e" AB Now J y=1, x=1 to 0 $= \pi e^{\pi x}$ $= \pi e^{\pi x}$ $= \pi e^{\pi x} (-\frac{1}{2} - \pi e^{\pi x})$ $= -\pi e^{\pi x}$ π(x-iy) (z)dz ρ -πί<u>γ</u> πε · (idy Y21 (17 DO eity dy 0 2 4=1

$$= -1 - e^{-i\pi}$$

= -1 - (+1)
= -2.

So, $\int f(z)dz = (c^{\pi}-1) + 2e^{\pi} + (e^{\pi}-1) + 2e^{\pi} - 2e^{\pi} + (e^{\pi}-1) + 2e^{\pi} - 2e^{\pi} - 4e^{\pi} - 1e^{\pi} - 1e^{$

A = X3

Here f(z)dz = (Ab JOB)

Along AO:

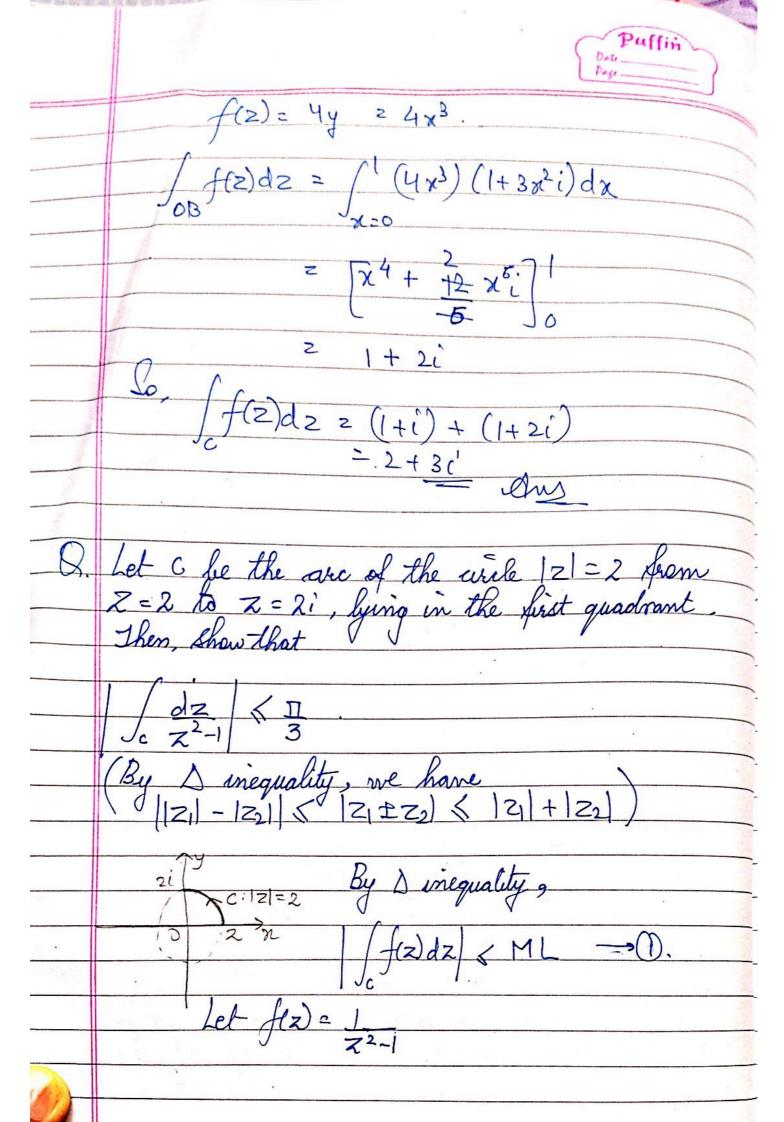
Mong A0. $y = x^3$, x = -1 to 0 $dy = 3x^2 dx$. $dz = dx + idy = dx + i(3x^2)dx$ $= (1 + 3ix^2) dx$

$$\int_{A_0}^{2} \int_{A_0}^{2} \int_{A_0}^{2} dz = \int_{A_0}^{2} \int_{A_0}^{2}$$

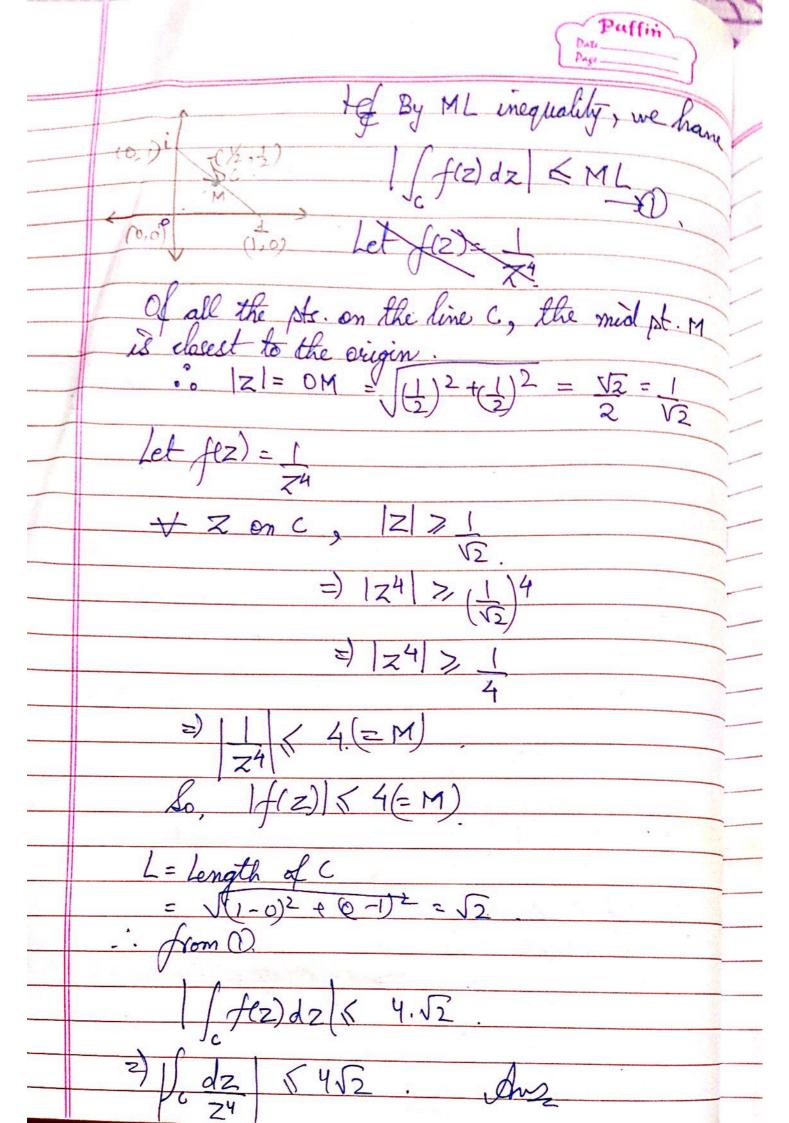
(-1 - i) = 1 + i

Along OB: $y = x^3$, x = 0 to $dy = 3x^2 dx$

 $dz = dx + i dy = dx + i (3x^2) dx$ = $(1 + 3x^2) dx$.



Consider | 22-1 > | 22 - | 1 $\Rightarrow |z^2 - 1| \ge |z^2 - 1|$ $|f(z)| \leqslant M : M = \frac{1}{3}$ L= Length of as C = 1 (araumference of 121=2) $\frac{1}{4}\left(2\pi \times 2\right) = \boxed{1}.$ o o from O, $\int f(z) dz \ll TI \cdot \frac{1}{3}$



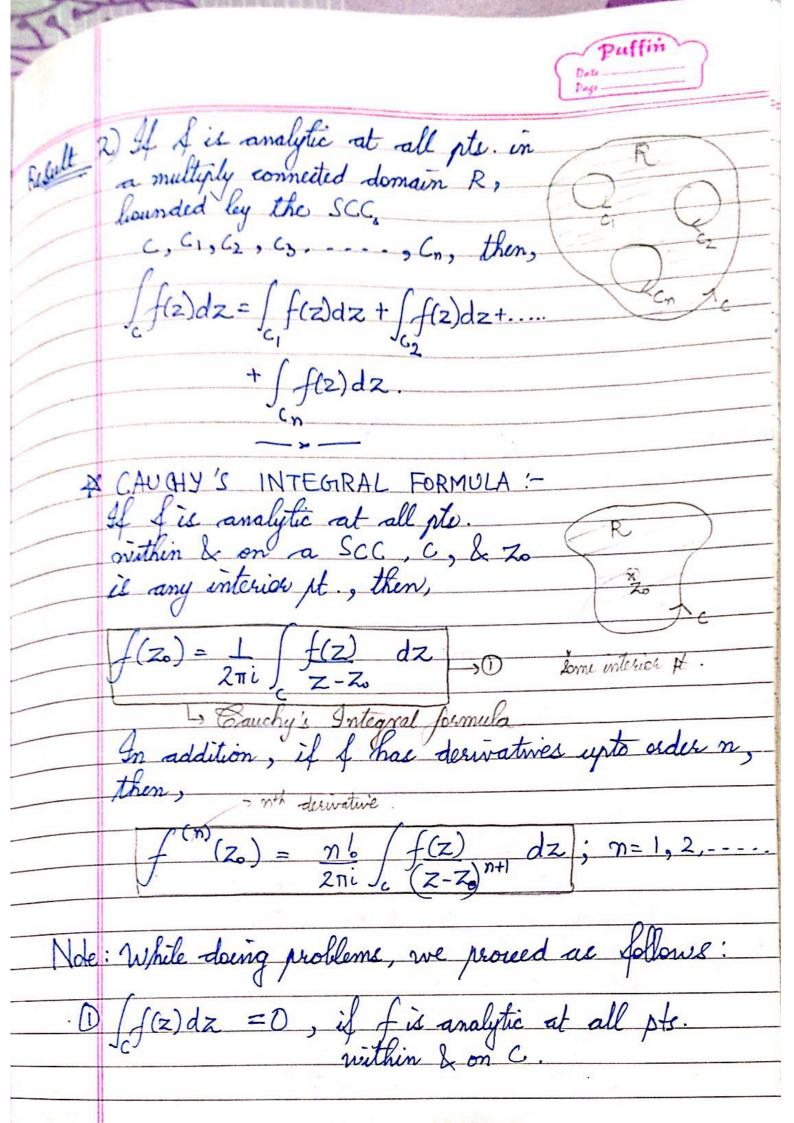
If C is the boundary of the & with vertice 0, 3i, -4, oriented in the 5 dir", then, 1/(e2- =) dz \ 60 Show:-(f(z)d2 SML -> 1 Let $f(z) = e^{z} - \overline{z}$ $|f(z)| = |e^{z} - \overline{z}|$ $|e^{z}| + |\overline{z}|$ Consider (ez) = |ex||e'y| = en Tosiy + sin'y = ex [ez | as e° = 1 is map value when = $|z| \leqslant 4$ non C(z=-4) is farthest from eligin. $f(z) \leqslant (1+4) \Rightarrow |f(z)| \leqslant 5(=14)$ Length of C Length (OA+ AB+BO) OA = 3, AB = \(\frac{32+42}{5} = 5 \); BO = 4 1 = 3+4+ 5= 12

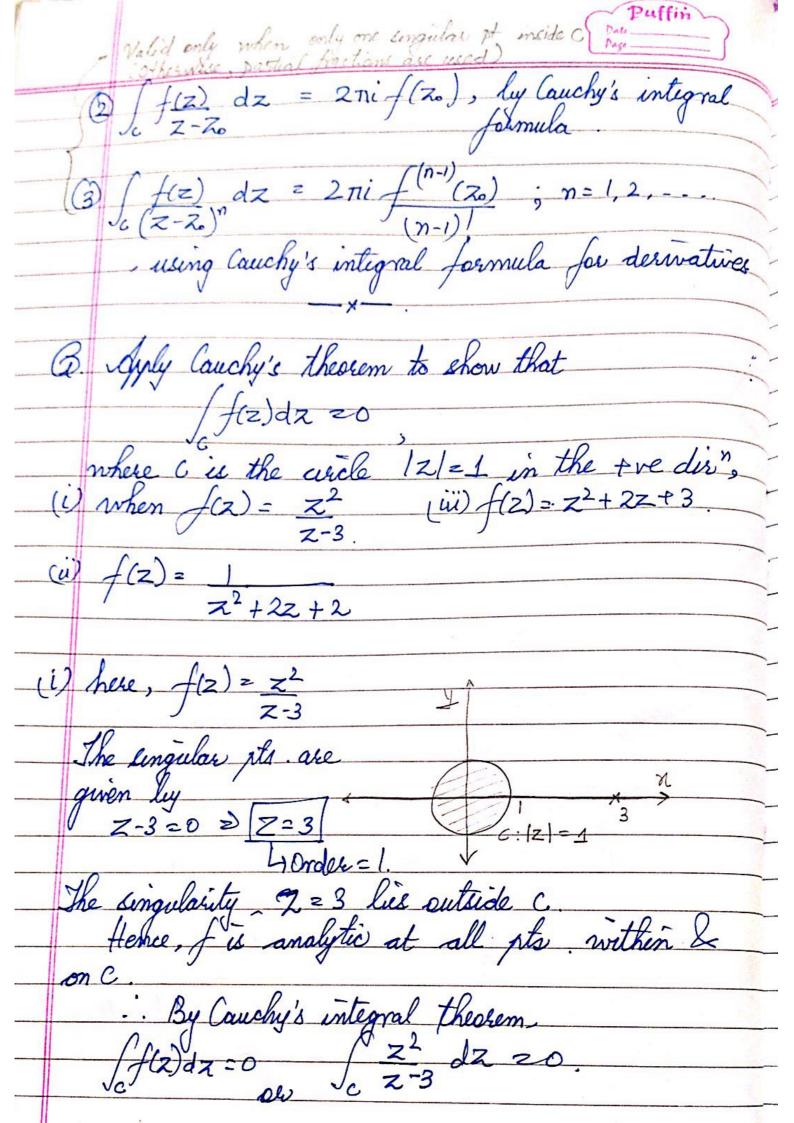
Puffin Date Page - $\int f(z)dz | \sqrt{5.12}$ / [ez-z]dz < 60 Let f be a complex valued f^n , cts ab

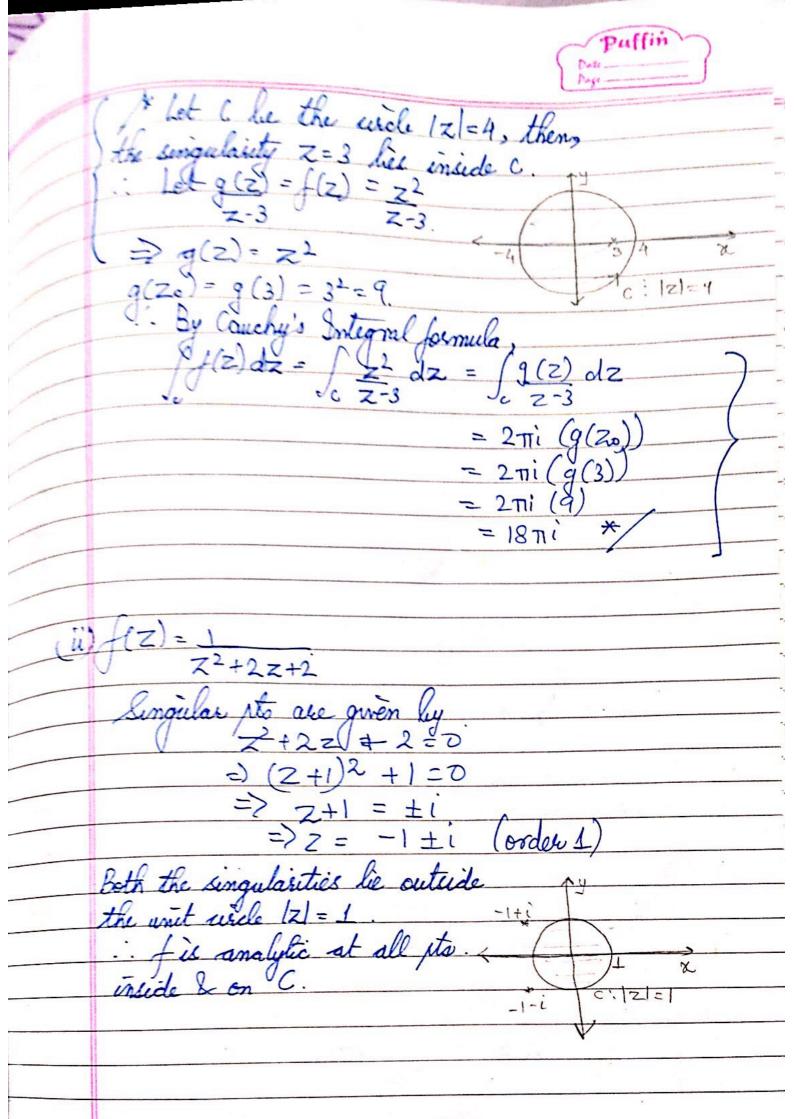
let f be a complex valued f^n , cts ab F'(z) = f(z). en, F is called an antiderivative f(z)dz = F(Z) 12=21 = $F(z_2) - F(z_1)$; is the aure joining $z_1 \ z_2$

& Connected domain: connected; if, some curve joining any 2 plu in the region, completely lies within the region. Connected RIUR2: not connected A connected domain is said to be simply connected, if any simple closed curve lying within the segion includes only the pts. of the domain. Otherwise , it is said to be multiply In other words, any domain, without a hole is simply connected A domain with holes is multiply

A multiply connected domain can be made into a simply connected domain by introducing STRIP WTS, as shown in the diagram: Simply connected * CAUCHY-GOURSAT THEOREM (or) CAUGHY INTEGRAL THEOREM If &(Z) is analytic at all pte (Scc) curre, C, then $\int f(z)dz = 0$ We can extend the Cauchy's integral theorem to multiply connected domains as follows: 1) If f(2) is analytic at all pte in a multiply connected domain R, bounded by 2 SCC, C&C, as shown in diagram, then $\int_{c} f(z) dz = \int_{c} f(z) dz$







... By Cauchy's Integral theorem, we have

If (z) dz = 0 $\frac{2}{\sqrt{2}} \int_{C} \frac{dz}{z^2 + 2z + 2} = 0.$ (iii) $f(z) = Z^2 + 2Z + 3$ Here fix analytic at all pto. in Z-plane.

So, its analytic within L on the curve C:\(\frac{1}{2}\)\(\frac{1}{2}\ $\int_{z} f(z) dz = 0$ $\Rightarrow \sqrt{(z^2 + 2z + 3)} = 0$ Note: By Cauchy's integral formula we can evaluate an integral only when the integrant has one singularity inside C.

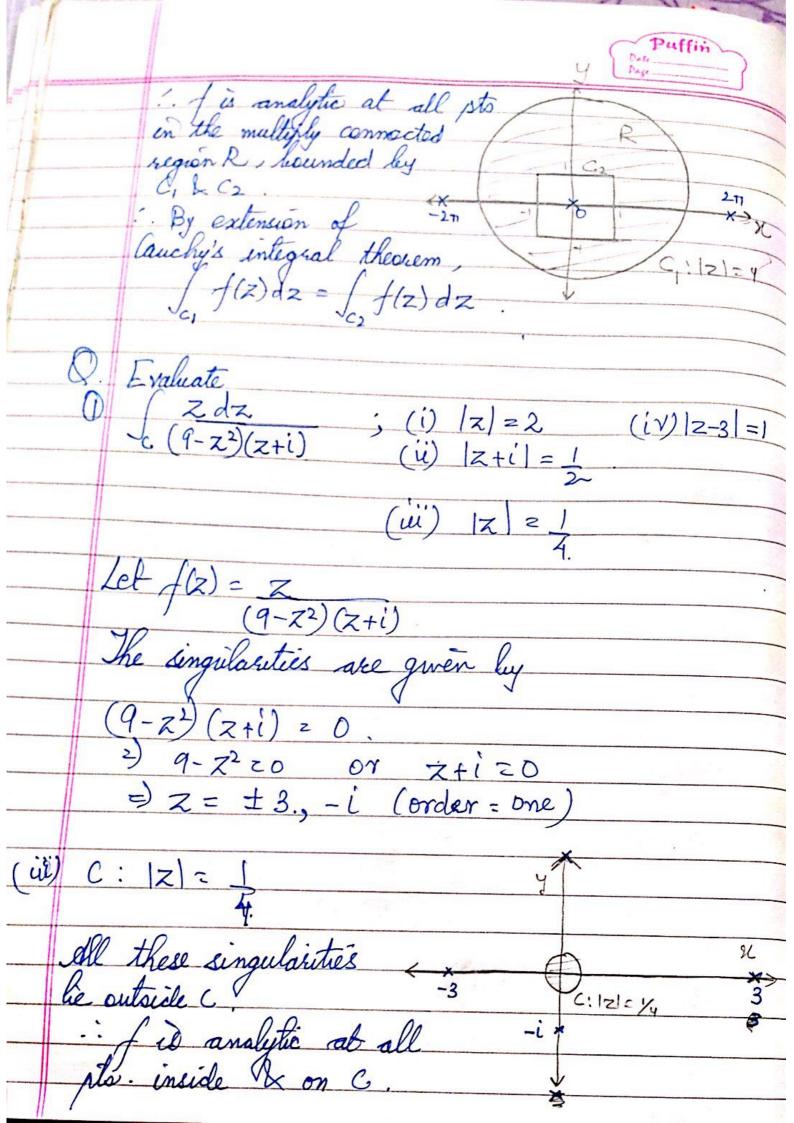
If I more than I singularity inside C, we use the method of partial fractions & then proceed as alone. Q. Let C, be a solutively oriented wich |z|=4.

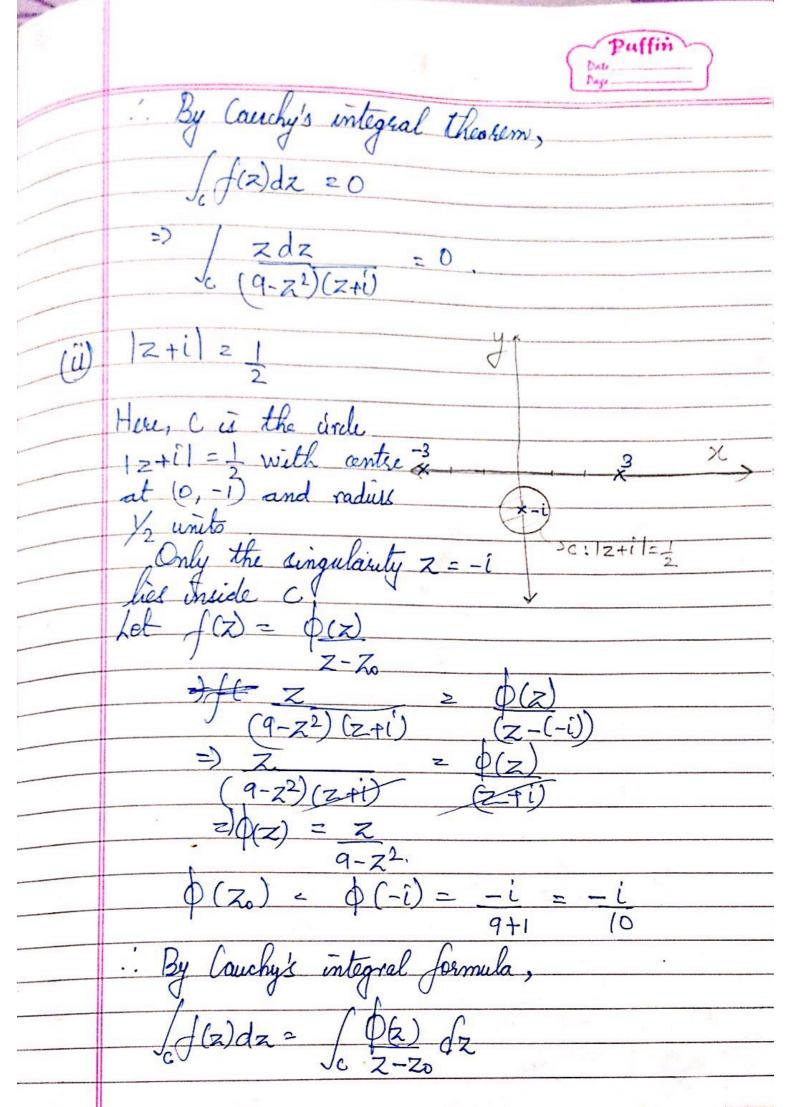
Let C, be a rollively oriented windary of the square, whose sides he along the lines $x=\pm 1$, $y=\pm 1$. Show that $\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$ when

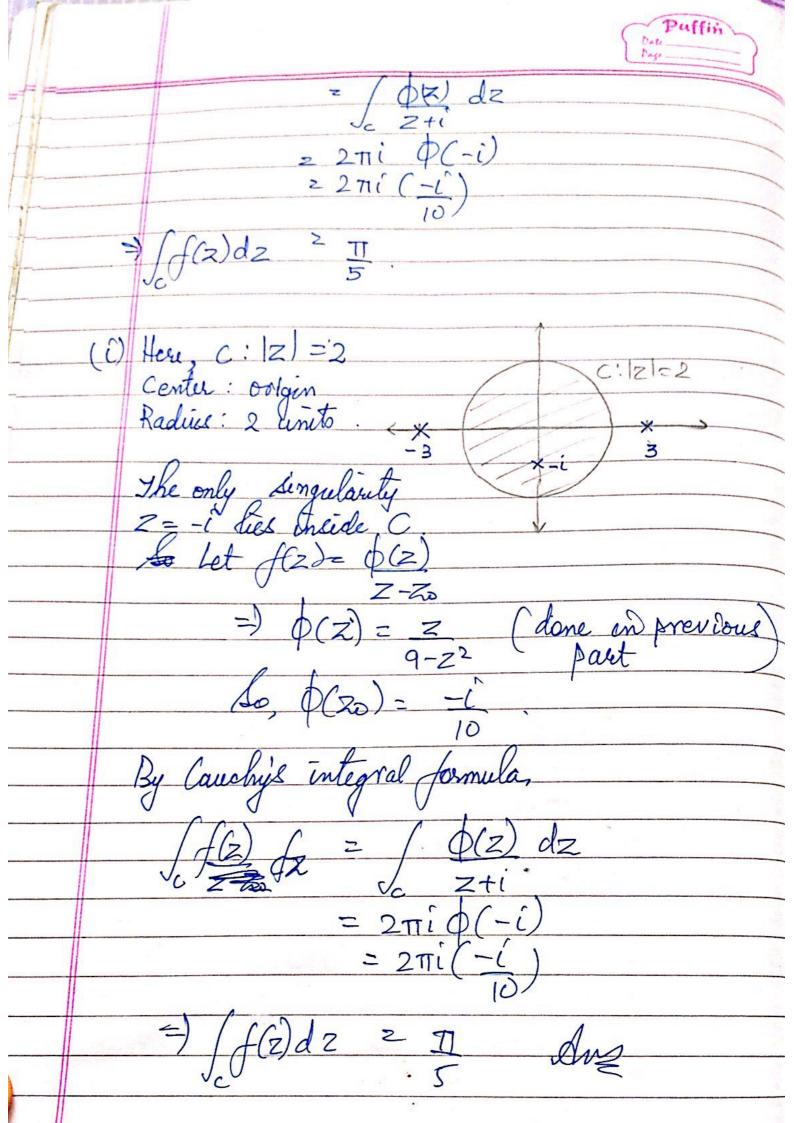
Entry (root has some . fow many puffin eg: 8m(2) = 0 (order=1) sin^2 z = 0 (order=2) $3z^2+1$ @ (2) = 2+2 D f(z) = 1 3z2 +1 Both the singularities lie outside the region.

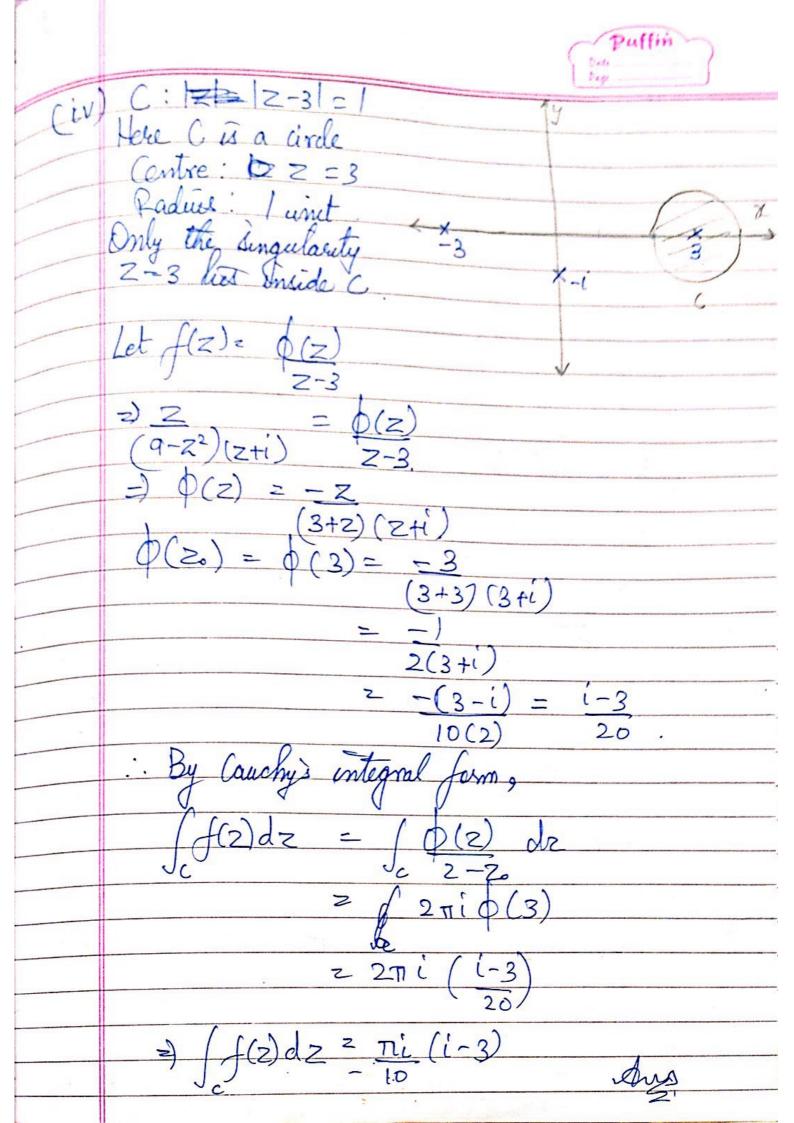
if is analy analytic at all pts in the multiply connected region R, bounded by C, & C2.

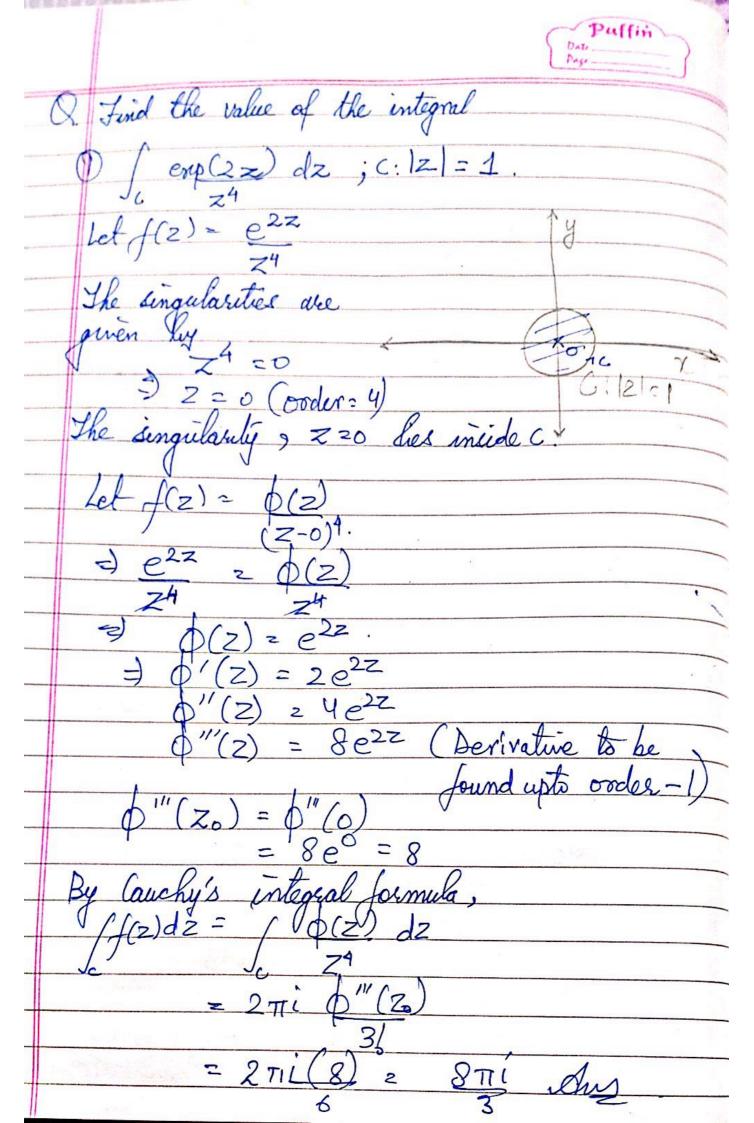
By the extension of Cauchy's integral thm, $\int f(z)dz = \int \int f(z)dz$ $\oint(z) = Z+2$ $\sin(z/2)$ The singularities are given by $\sin(\frac{z}{2}) \approx 0 \Rightarrow \frac{z}{2} \approx n\pi$; $n \in \mathbb{Z}$. ≥ x = 2nTI (order 1) Here, & all the singularities lie outside the given

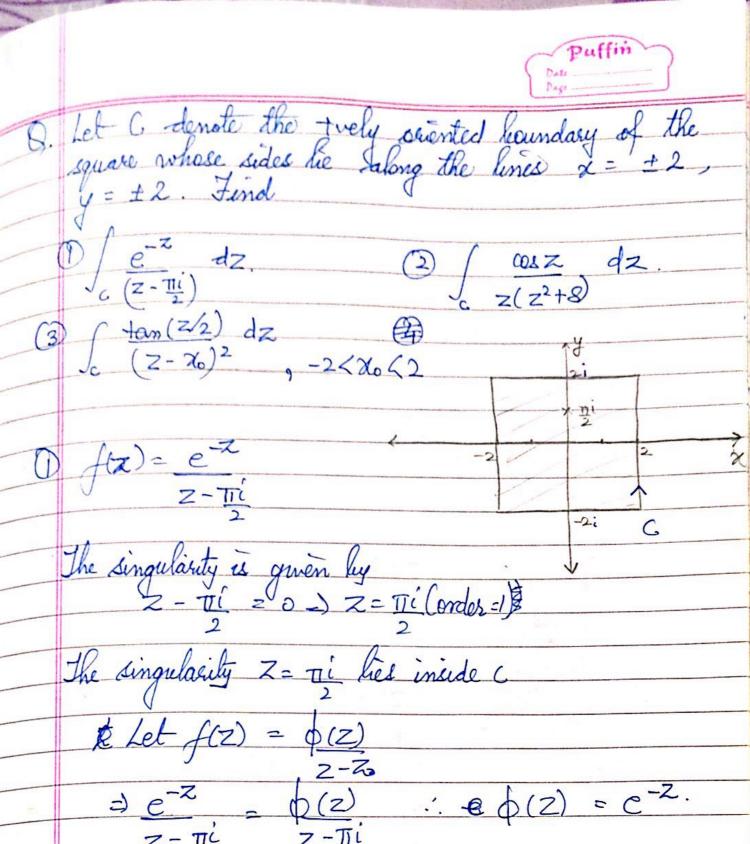












$$\frac{z-z}{z}$$

$$\frac{z-z}{z} = \frac{z-z}{z}$$

$$\frac{z-z}{z}$$

$$\frac{z-z}{z}$$

$$\frac{z-z}{z}$$

$$\frac{z-z}{z}$$

$$\frac{z-z}{z}$$

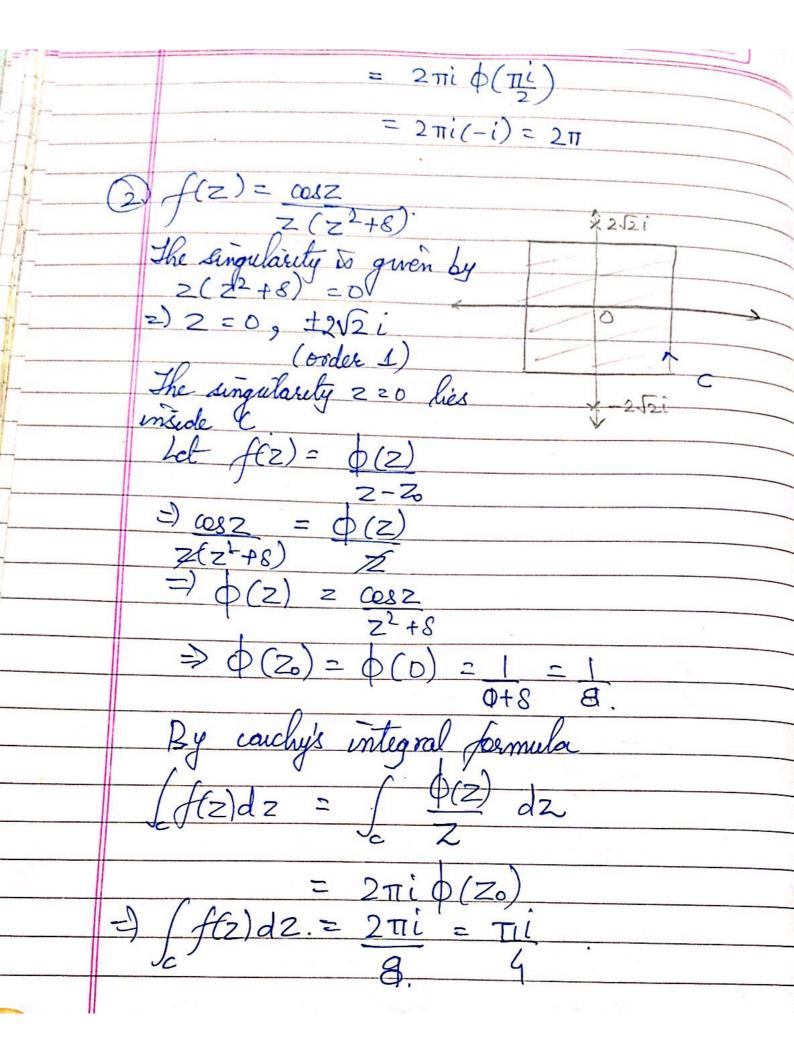
$$\frac{z-z}{z}$$

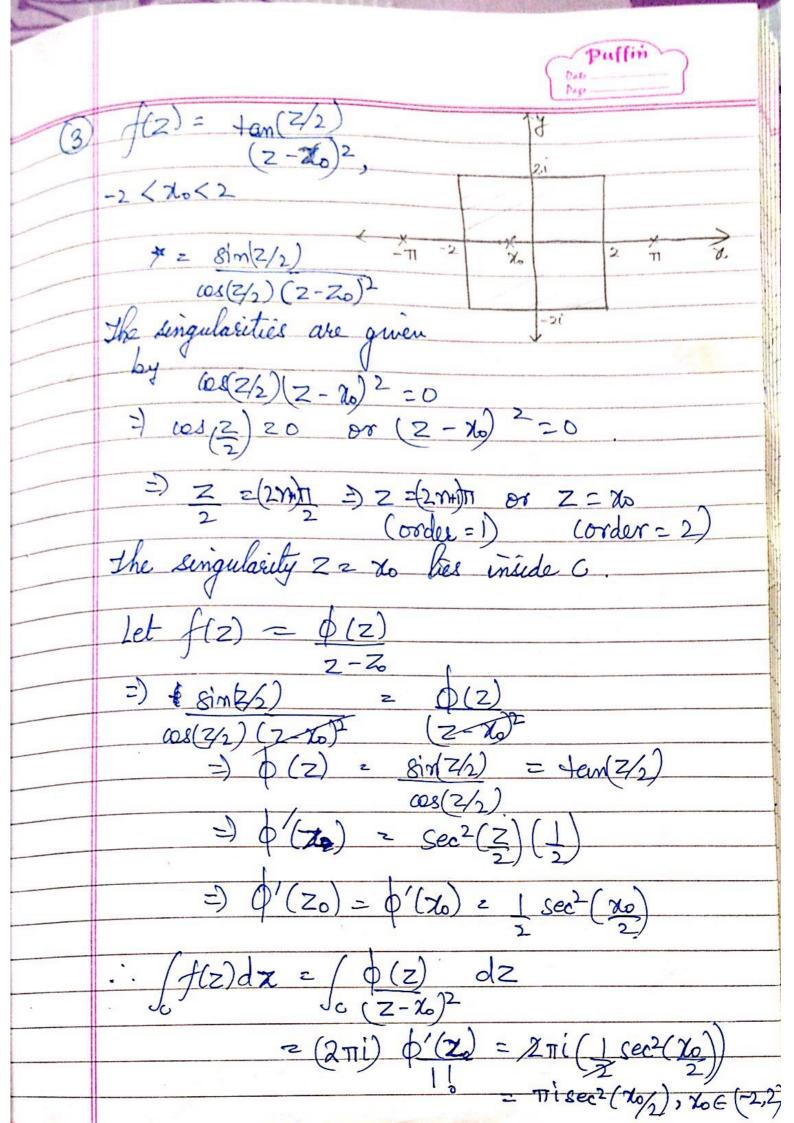
$$(Z_0) = \phi(\pi_1^{(i)}) = e^{-i\pi/2} = \cos(\pi_1) - i\sin(\pi_2)$$

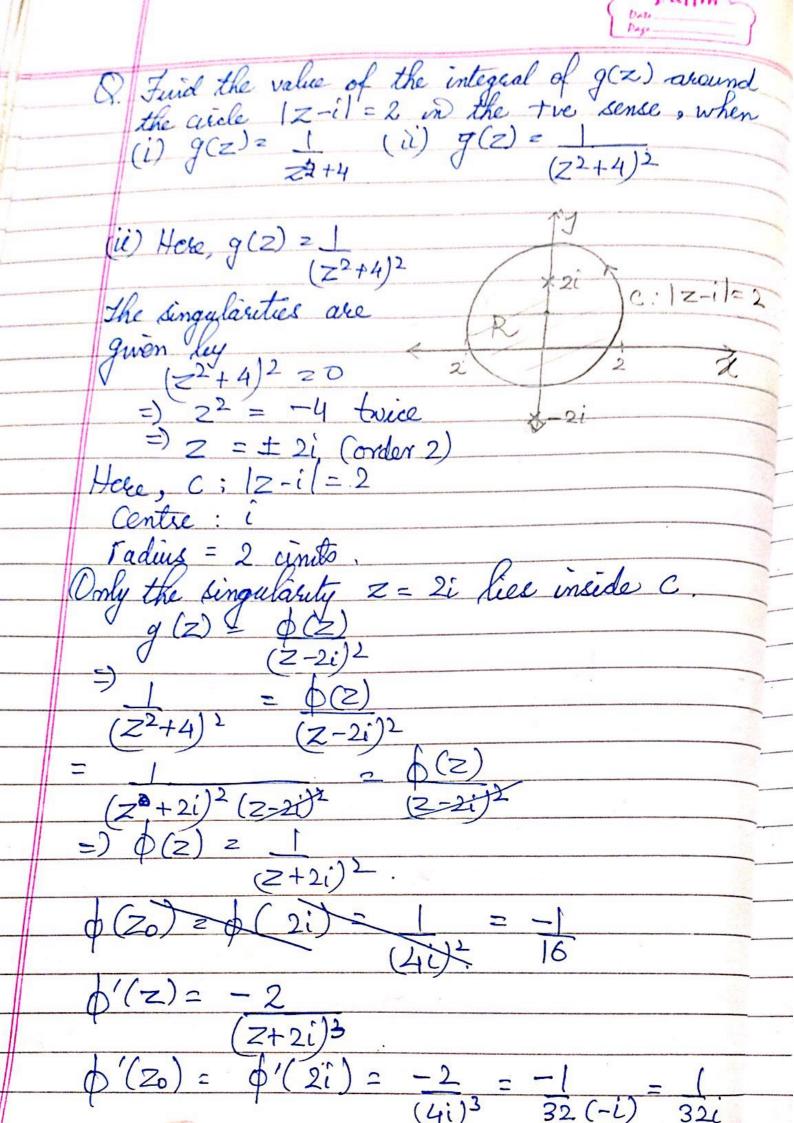
$$= -i$$

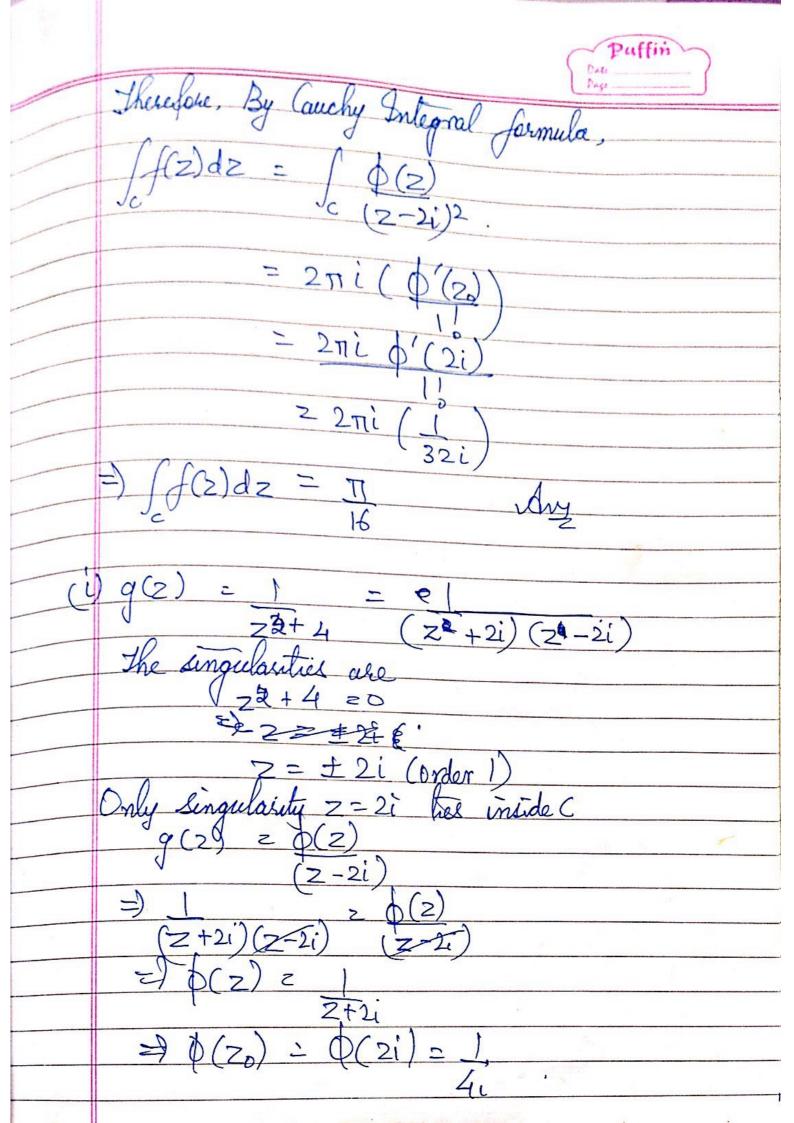
- By Cant Cauchy's integral formula,

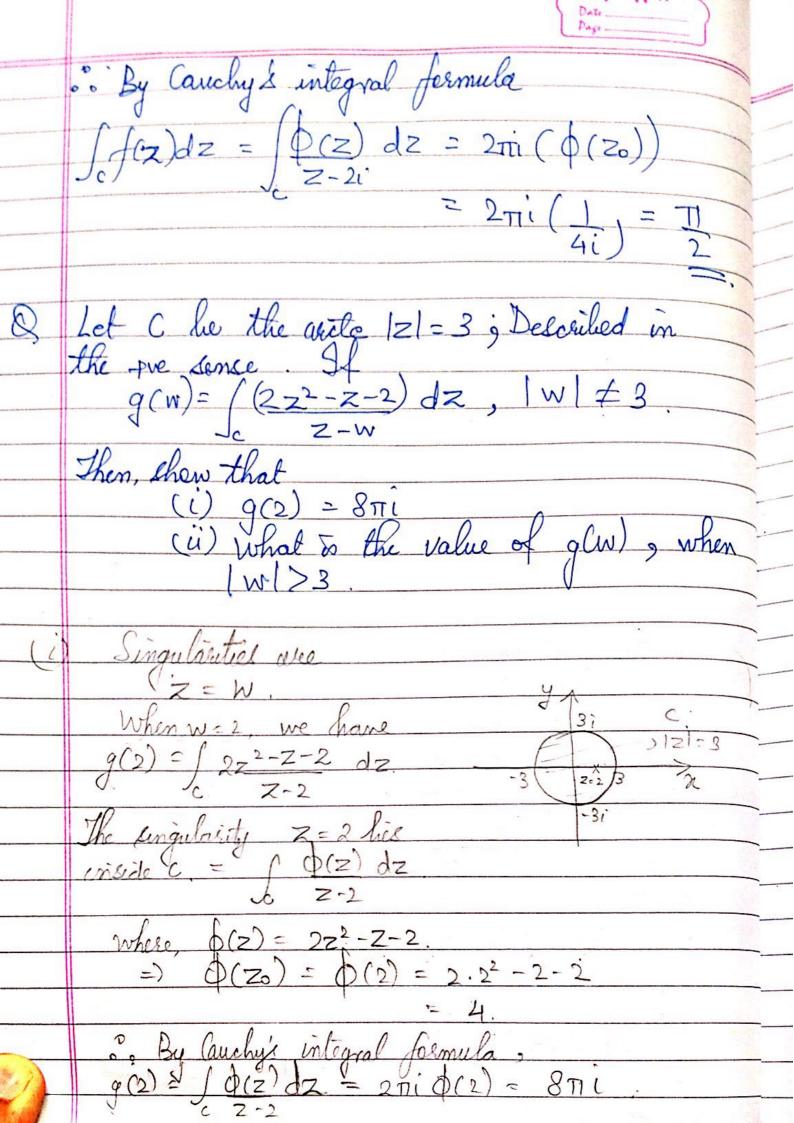
$$\int_{C} f(z) dz = \int_{C} \frac{f(z)}{z - T(L)} dz$$

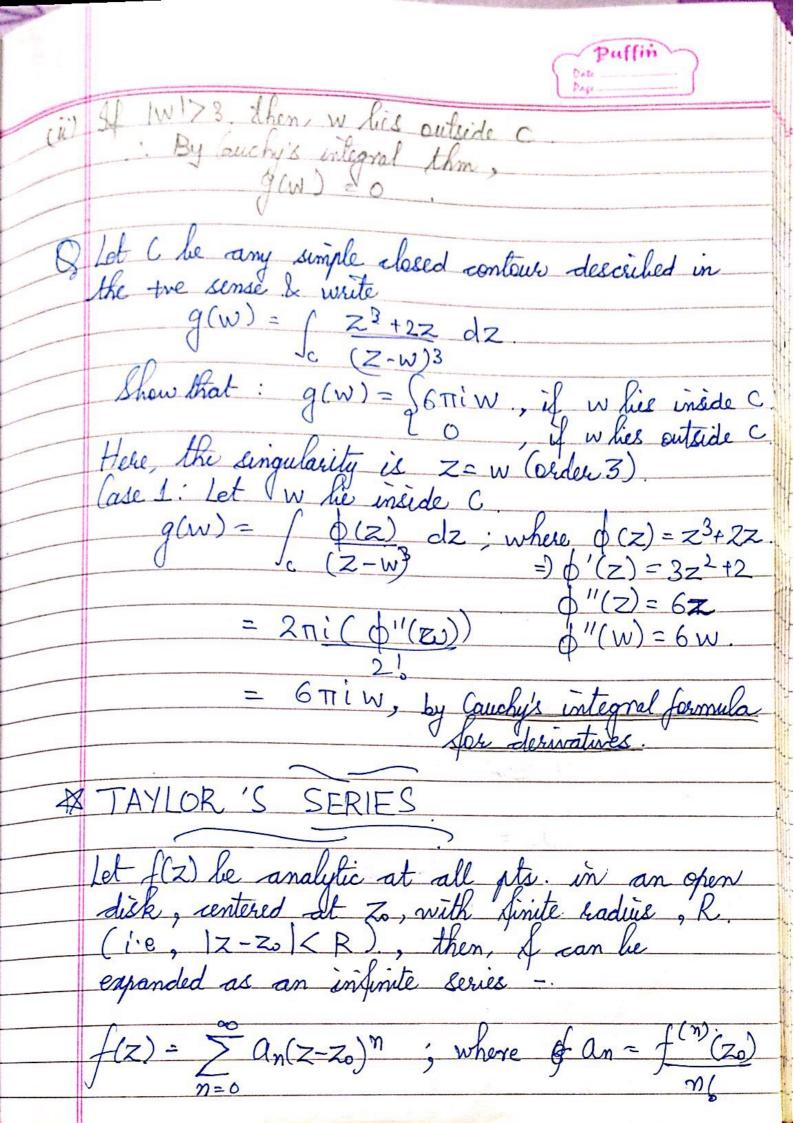


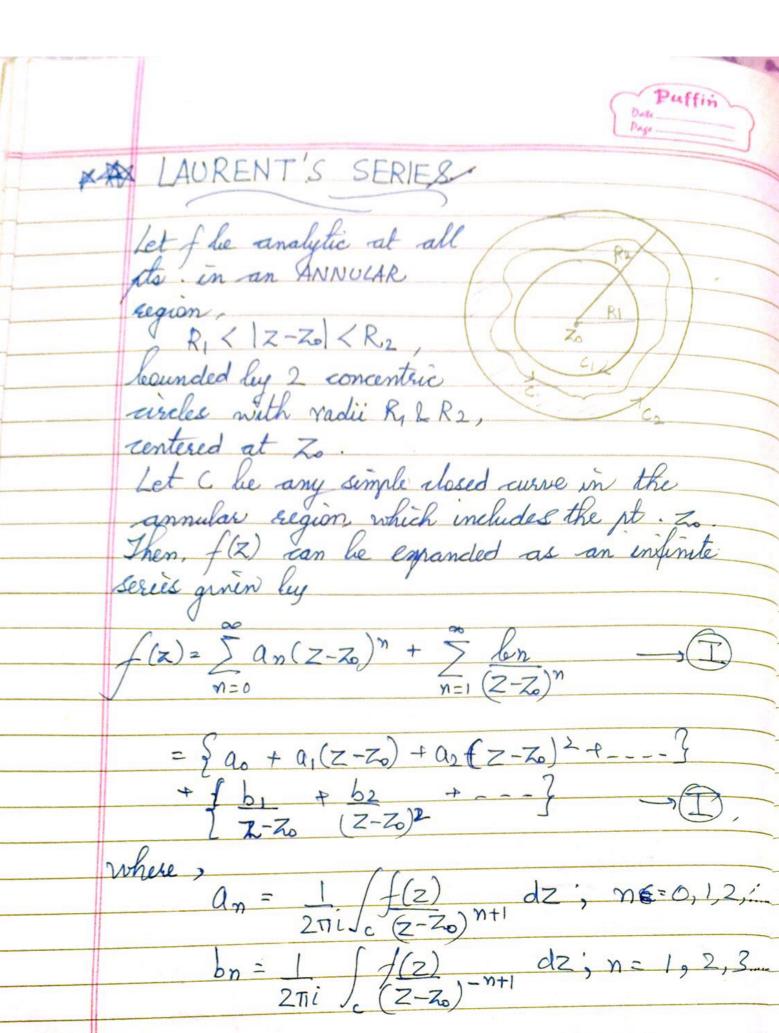












Note We use the following formular to do pullems

$$0 e^{z} = 1 + \frac{z}{1!} + \frac{z^{2}}{2!} + \dots$$

6)
$$8\pi z = z - \frac{z^3}{3} + \frac{z^5}{5!} + \frac{z^5}{5!}$$

(3)
$$\omega z = 1 - \frac{2}{2!} + \frac{2}{3!} = -\frac{2}{3!}$$

(3)
$$\cos z = 1 - \frac{1}{2} + \frac{1}{2} +$$

(5) with
$$z = 1 + z^2 + z^4 + \dots$$

Q. Expand frat se a Lourent's series, valid in the given domains:

$$f(z) = -1$$
 $(z-1)(z-2)$

Let f(z) = A + B = -1 z-1 + B = -1 $z-2 \cdot (z-1)(z-2)$ By partial fraction method:

=) A = 1, B = -1 $\therefore f(z) = 1 - 1 \longrightarrow 0$ = -1(1-z) V = 7(1-1) i) Here, 12/<1 =) | = | < 1 < 1 Z-2=-2(1-Z)V $= Z\left(1-\frac{2}{2}\right)$ 3 3 1 .. (1) becomes $f(z) = \frac{1}{z-1} - \frac{1}{z-2}$. $= -1\left(\frac{1}{1-2}\right) + 2\left(\frac{1}{1-2/3}\right)$ $z(-1)(1-2)^{-1} + 2(1-2)^{-1}$ $= \int (z) = (-1)(1+z+z^2+...) + 2(1+\frac{z}{2}+\frac{z}{2})^2 + ...$ This is the sequired Lawrenty series. z-1 = -1(1-z)- $z(1-\frac{1}{z})$ (ii) 1<121<2 2) 1 <1 2 | 2 | <1. 7-2'=-2(1-7) $= z(1-\frac{2}{3})$

Puffin -

$$=\frac{1}{2}\left(\frac{1-1}{2}\right)^{-1}+\frac{1}{2}\left(\frac{1-2}{2}\right)^{-1}$$

$$= f(2)^{2} \frac{1}{2} \left(\frac{1+1}{2} + \frac{1}{2} \right)^{2} + \dots + \frac{1}{2} \left(\frac{1+2}{2} + \frac{2}{2} \right)^{2} + \dots$$

This is the required Laurent's enpansion

$$Z-1=-1(1-2)$$

$$= z(1-1) V$$

$$Z-2=-2(1-Z)$$

$$f(z) = 1 - 1 = z(1-2)$$

 $z-1$ $z-2$

$$\begin{array}{c|c} z & -1 & \\ \hline z(1-1) & z(1-2) \\ \hline z & z & -1 \\ \hline z & z & -1 \\ \hline \end{array}$$

$$f(z) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{2}{2} + \frac{2}{2$$

This is the required Laurent's expansion

(iv) Here, |z-1/1 e Let v = z - 1 = |v|(1=) z - 2 = v + 1 - 2 = v - 1U (-1) (1-v) = -1(1-0)~ = 1 + (1+U+U2+---) $= \int_{-2}^{2} f(z) = \int_{-2}^{2} + \left(1 + (z-1) + (z-1)^{2} + \cdots\right)$ This is the required Laurent's series. Find the Lowent's expansion of &(z) = ez in 0 < 12+1 < 0 z 1.e-1.eu $\frac{1}{e_{1}^{2}} \cdot e^{U} = \frac{1}{e_{1}^{2}} \left(1 + \frac{U}{1} + \frac{U^{2}}{2} + \dots \right)$ e(z+1)2 (1+ 2+1+ (z+1)2 -) This is the sequired & Lourent's expansion.

De Find 2 Lawrent's expansion be state the regions in which those expansions are valid. $f(z) = \frac{1}{z^2(1-z)}$ We shall expand f(z) as Lowent's series, valid in the domains

(i) $|z| \le 1$ Let $|z| \le 1$ (i) Let 121<1 $\int (z) = \frac{1}{z^{2}(1-z)}$ $= \frac{1}{z^{2}}(1-z)^{-1}$ $= -z(1-\frac{1}{z})$ = 1 (1+2+22+23+...) valid in 12/<1 |z| > 1 |z| > 1 |z| = 1 - 2 |z| = -z(1-1) |z| = -z(1-1) $|Z| = \int_{Z^{2}(-Z)(1-\frac{1}{2})}^{|Z|}$ $\frac{2}{73}$ $\frac{-1}{2}$

 $\Rightarrow f(z) = \frac{-1}{-3} \left(1 + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^2 + \cdots \right)$

These are the required 2 Laurent's siries

0. Elem that when 0 < |z-1| < 2, |z-1| <

(ii) 12/23

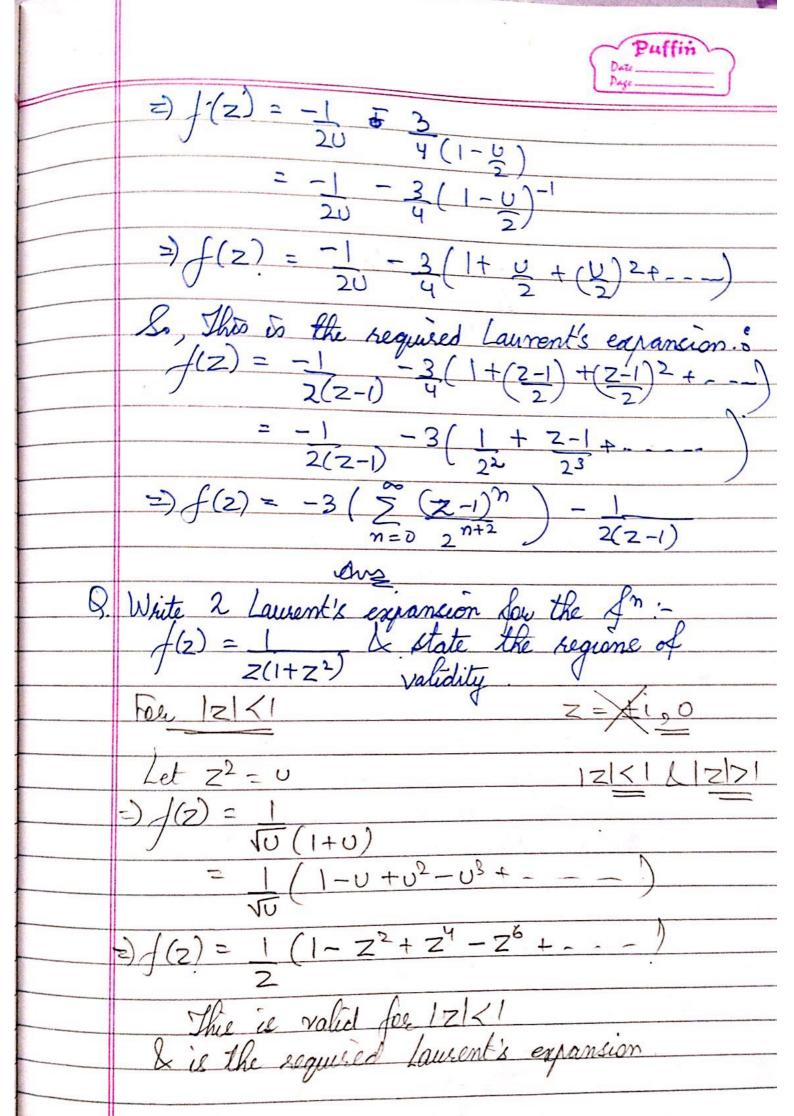
Let $f(z) = \frac{Z}{(z-1)(z-3)}$ Let $f(z) = \frac{Z}{(z-1)(z-3)} = \frac{A}{z-1} + \frac{B}{z-3}$ = 2 = A(z-3) + B(z-1)At z = 3 = B = 3

z = 1, $A = -\frac{1}{2}$

f(z) = -1 + 3 2(24) + 2(2-3)

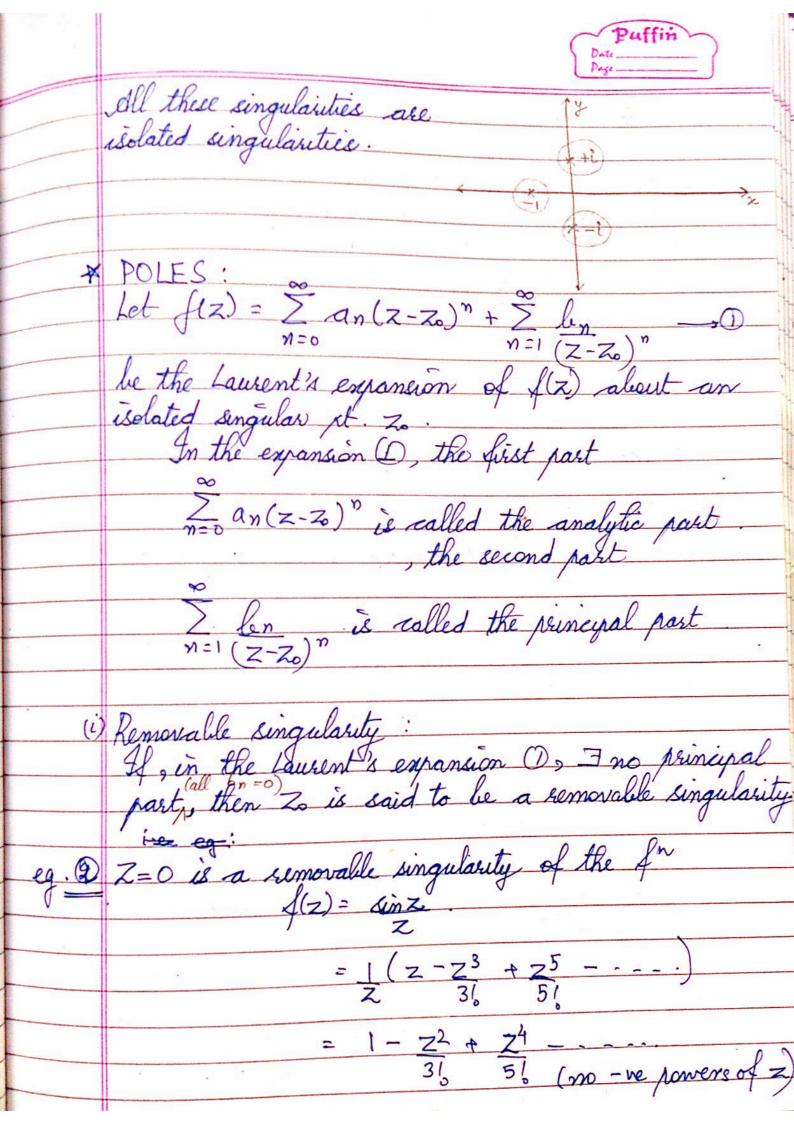
Let v=z-1, => z=v+1 => z-3=v-2

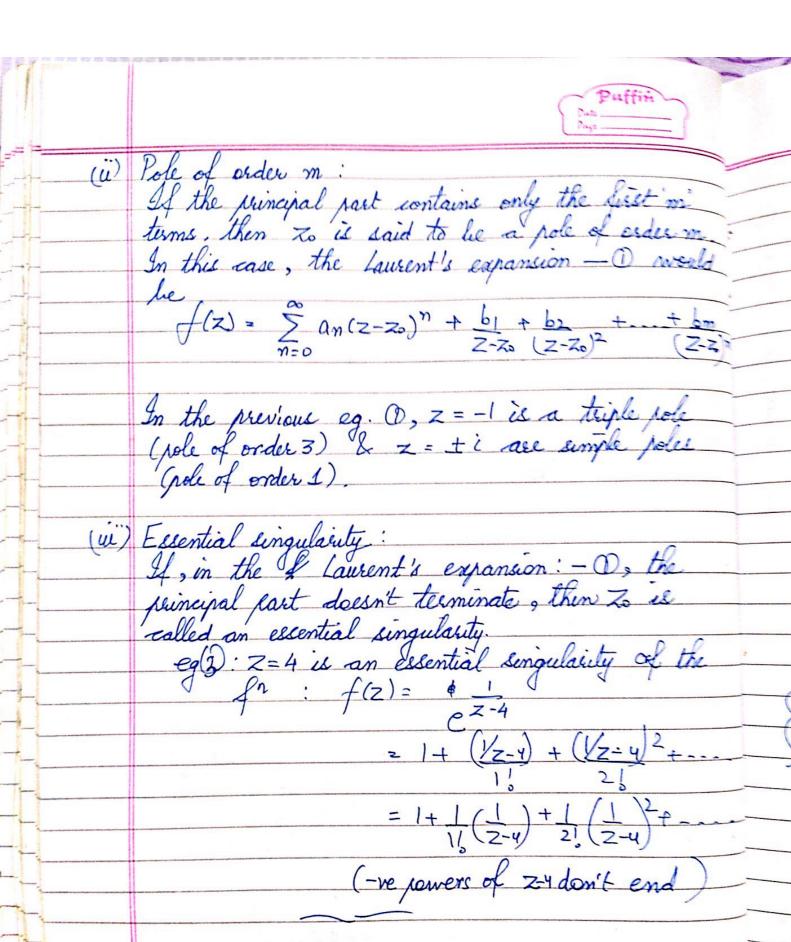
Guren OK 12-1/62 =) OK 100/ K2 =) 10/ K1



+23 = 1+53 X $= \frac{1}{Z(Z^2)(1+\frac{1}{2})}$ $Z^{3}\left(1+\frac{1}{7^{2}}\right)$ $=\frac{1}{7^3}\left(1+\frac{1}{Z^2}\right)^{-1}$ $=) f(z) = \frac{1}{z^3} \left(1 - \frac{1}{z^2} + \left(\frac{1}{z^2} \right)^2 - \left(\frac{1}{z^2} \right)^3 + \cdots \right)$ This is the required laurent's expansion, POLES, RESIDUES * Isolated Singularity:

O singular pt. To is said to be an isolated singularity, if, the f^n f is analytic at all pts. in the deleted neighbourhood of Z_0 , i.e., $0 < |Z-Z_0| < S$. eg() Let $f(z) = \frac{z^2}{(z+1)^3(z^2+1)}$ The singular xts are: $(z+1)^3(z^2+1)=0$ z = -1 (thrice) Z = -1 (thrice), ± i (prder 3) (order 1)





Let $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + b_1 + b_2 + ... + b_m + z-z_0 (z-z_0)^2$ (z-z_0)m be the Laurent's expansion of f(z) about an isolated singular pt. Zo. Then,

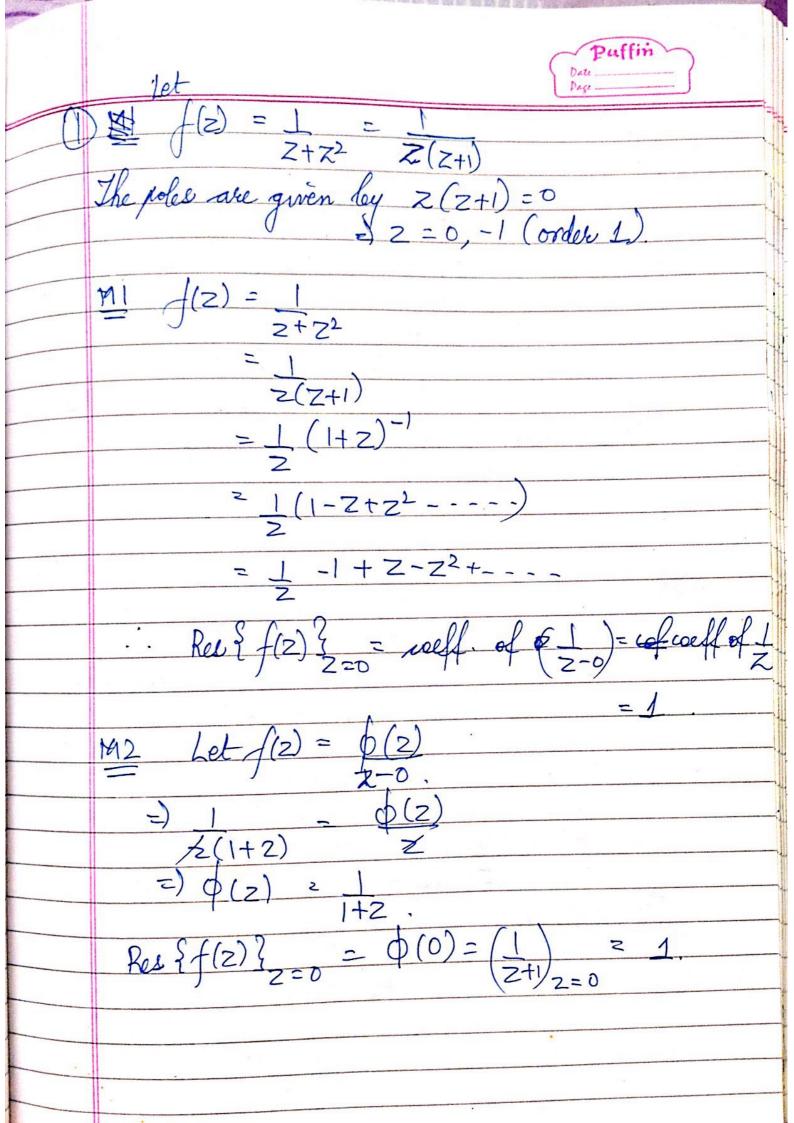
b, coeff. of 1 in the Laurent's expansion = Res { f(z) } z=Zo $b_1 = \frac{1}{2\pi i} \int \frac{f(z)}{z} dz$ =) (f(z)dz = 2 mi = 2 mi & Restf(2) } z=2 * CAUCHY'S RESIDUE THEOREM Let fle analytic at all pts. he isolated singularities (In which he within C. Then,

 $\int_{C} f(z) dz = 2\pi i \left\{ R_{1} + R_{2} + \dots + R_{n} \right\}$

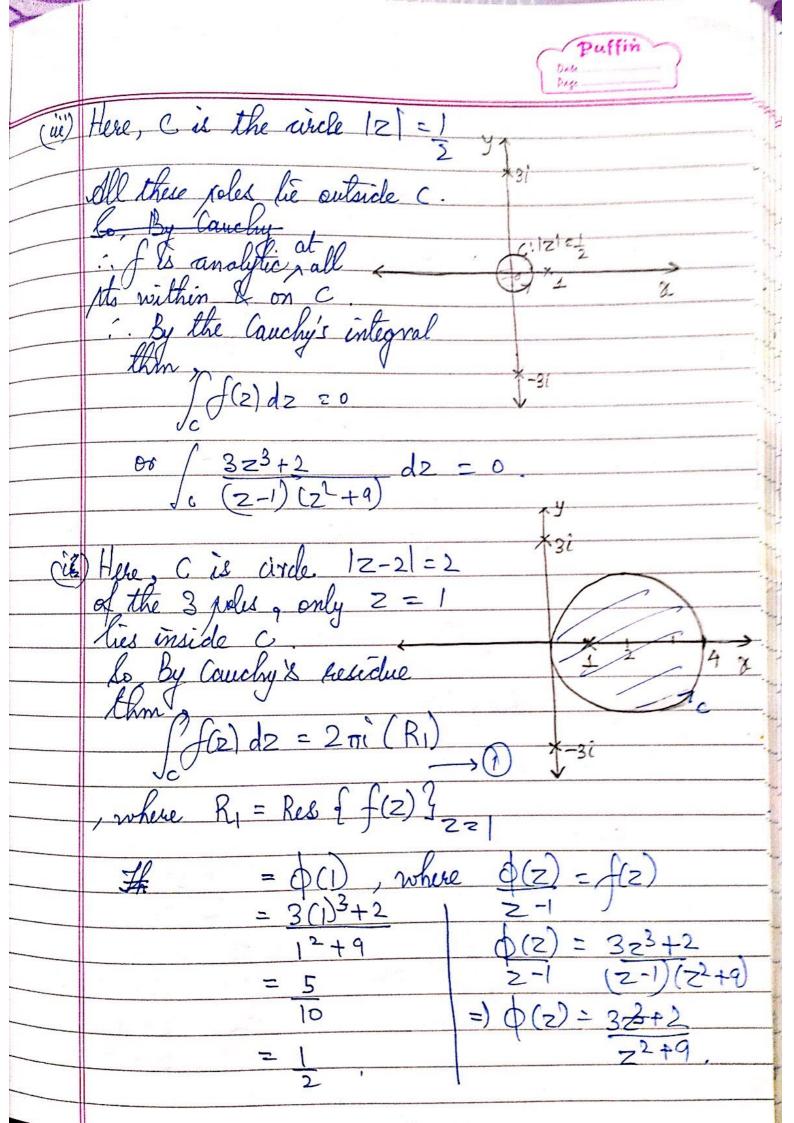
= $2\pi i \left(\sum R\right) \rightarrow 0$ where $Ri = \text{Res } \{f(z)\}$; $i = l_{9}2, 3, --3$ $z = z_{i}$

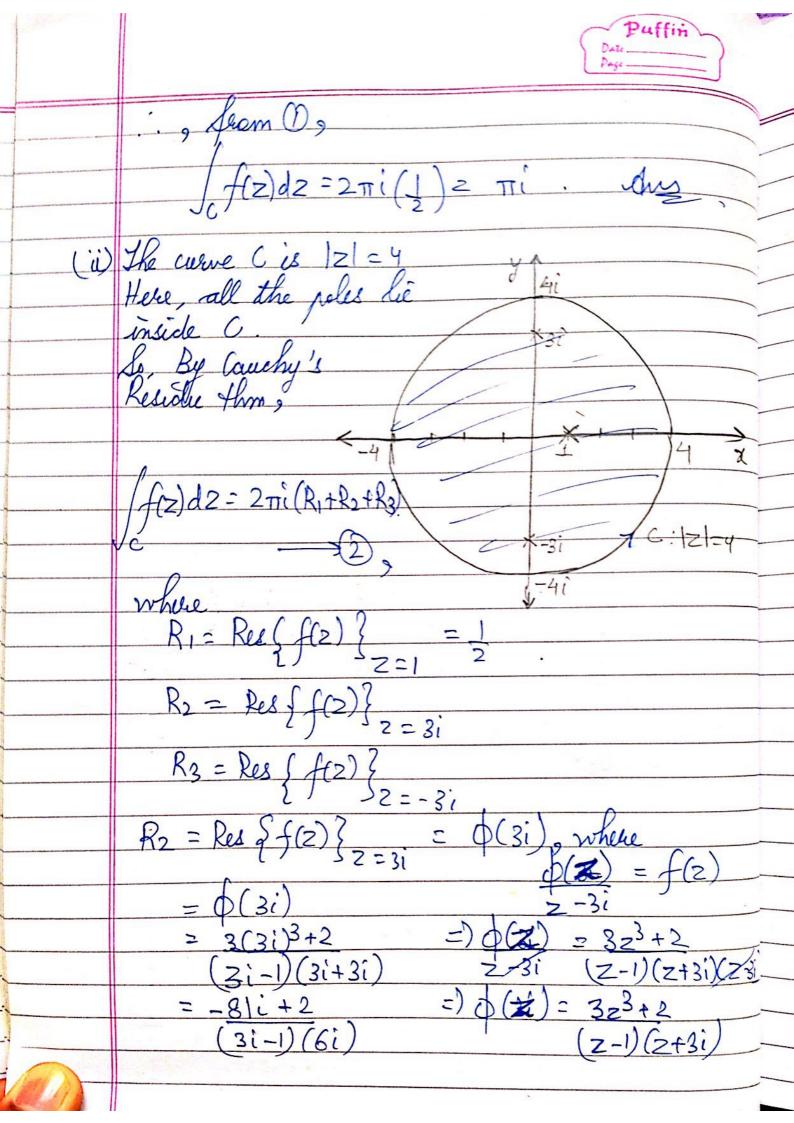
& ZR = Rum of residues.

	Det Pey
NA APT APPROVE	egn O is the Cauchy's Residue thm.
*	Formulae to calculate the residues
(I)	Formulae to calculate the residues (can fail sometimes). Let $z = Z_0$ be a simple role (role of order 1). (i) Ree of $f(z)$? $z = Z_0$
	where $\phi(z) = f(z)$
	(ii) Let $f(z) = P(z)$
	$Z-Z_{o}$ (ii) Let $f(z) = P(z)$ $Q(z)$ Then, Res $f(z)$ $\frac{1}{2}$
	Q'(Zo)
Ī	Let zo be a pole of order m . Then, $f(z) = \phi(z)$ $(z-z_0)^m$
	then, $f(z) = (z-z_0)^m$
	where $\phi(z) \neq 0$ & ϕ is analytic at Z_0 .
	Res $\{f(z)\}_{z=z_0}^2 = (m-1)(z_0), m=1,2,$
	(*M-1);
6	7. 1 the country at 7-0 low the low
05	Find the recidue at Z=0 for the fins
	Z+Z ²
	€ Zas(1)
The sales	2/



Let f(z) = z cos(1) $= 2 \left[1 - \frac{1}{2} \right]^2 + \frac{1}{2} \cdot 4$ $= Z \left[1 - 1 + 1 \right]$ $Z^{2} \cdot 2! \quad Z^{4} \cdot 4!$ = 2 - 1 + 1 $= 2.2! + 2^3.4!$ Res $\{f(z)\}= coeff. of I = I$ = -1 = -1. Evaluate 1) / 3 z 3+2 dz (i) Jaken ounterclockwise around the circle (a) 12-2 = 2 (b) 121=4 (c) 121 = 1 = 1, ±31 (order 1 Simple polis)





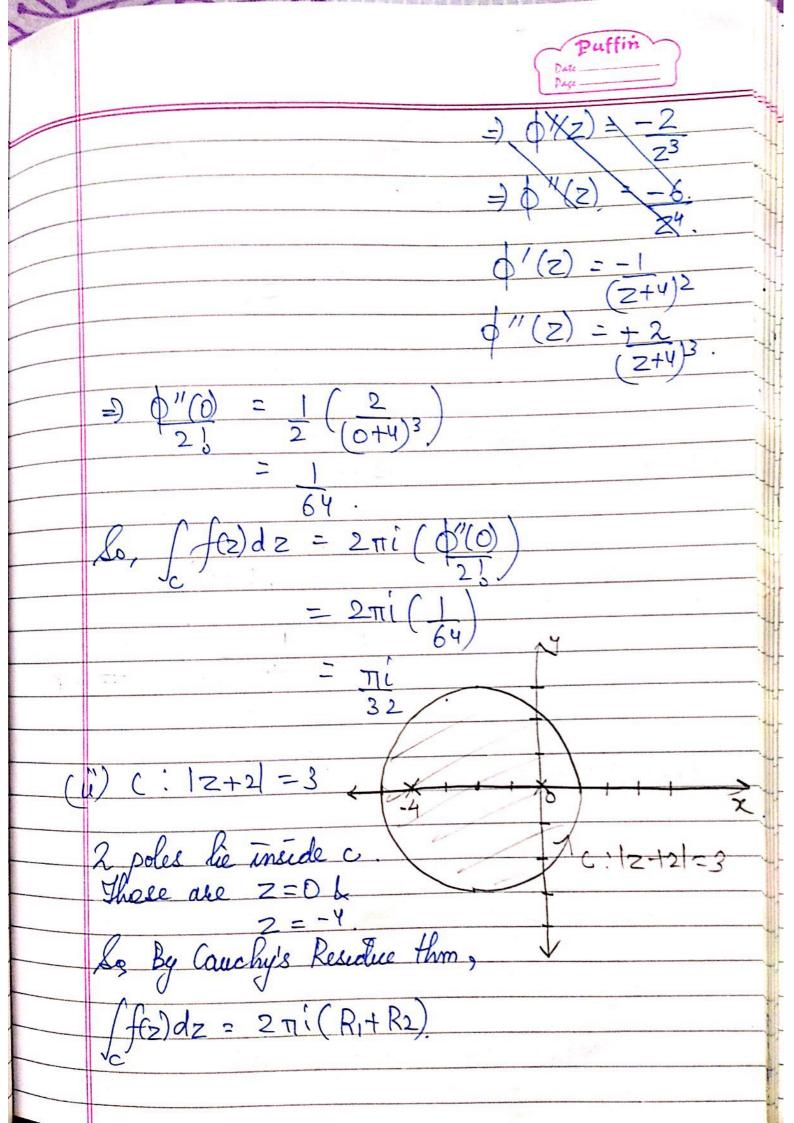
Puffih by $=) R_2 = -8|i+2| = 2-8|i|(3-i) = -2.5 + 75i$ -18-6i 6(i+3)(3-i) 60i $= \phi(-3i)$ = -3iR3 = Res (f(2) { where $\phi(2) = f(2)$ $= \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{3z^3 + 2}{(2-1)(2-3i)(25i)}$ $= \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{3z^3 + 2}{(2-1)(2-3i)}$ $= \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{3z^3 + 2}{(2-1)(2-3i)}$ ϕ (-3i) (-3i-1)(-3i-3i)= -81(-i)+2(-3i-1)(-6i) $\frac{81i+2}{(3i+1)(6i)} = \frac{81i+2}{-18+6i} = \frac{81i+2}{-6(-3+i)(-3-i)}$ = -243i + 81 - 6 - 2i245+75i = -2451 +75 From 9, $f(z) d 2 = 2\pi i \left\{ \frac{1}{2} \left(\frac{-245 + 75i}{60i} \right) + \left(\frac{245 + 75i}{60i} \right) \right\}$ 1 + 150i 2 60i $= 2\pi i \left(\frac{1}{2} + \frac{5}{3} \right)$ 2 6TTi dy

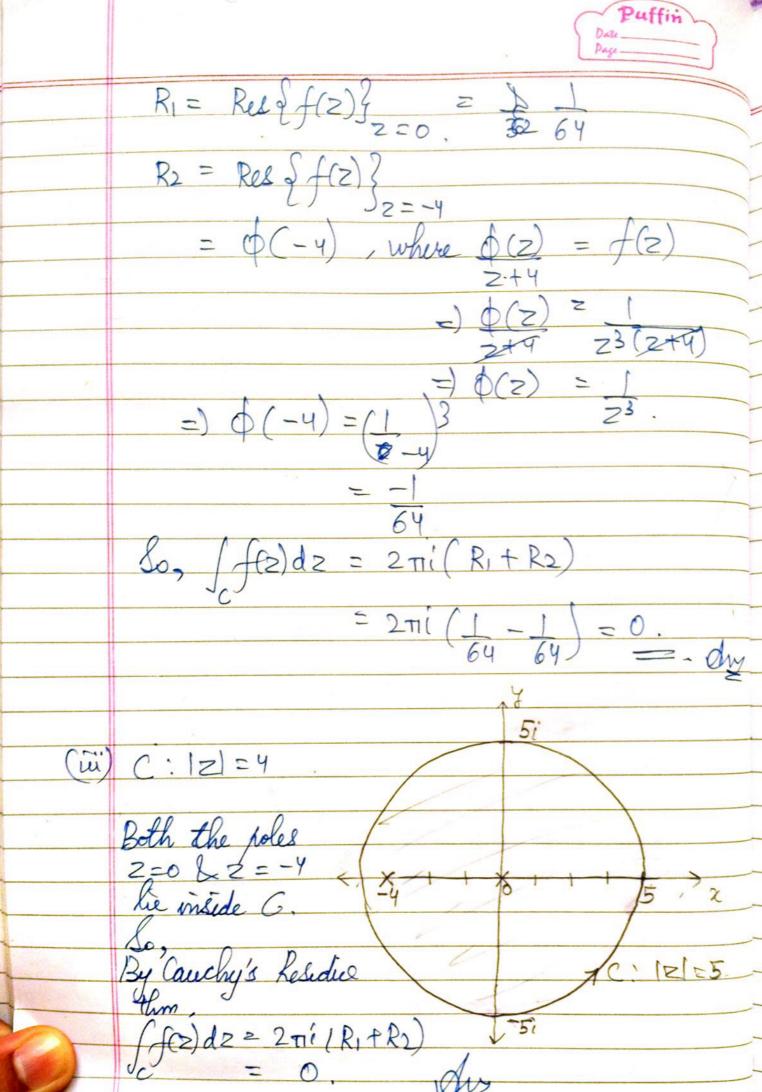
堂 S Evaluate of dz (za+4) when c is the wile: (i) |z|=2 The poles are given by

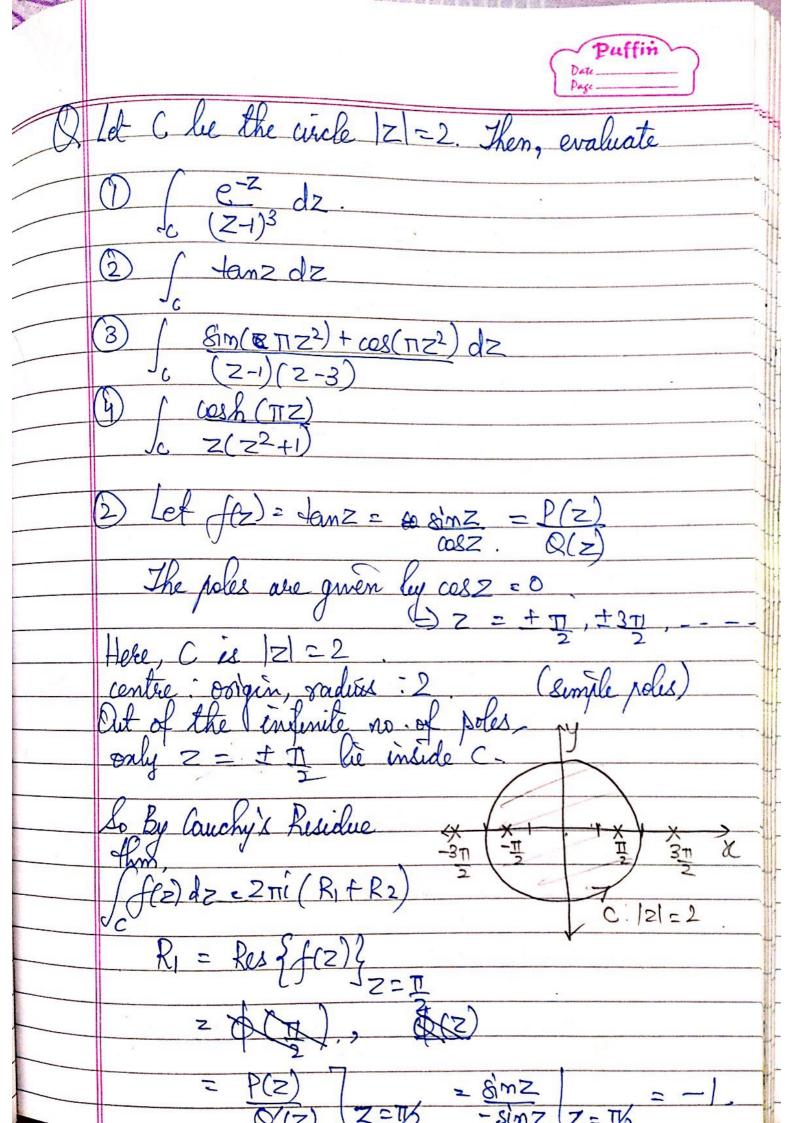
23 (2+(4) =0

=) 2 = 0 (# truple pole)

Z = -4 (Simple pole) (D) C: |Z|=2 The only sole 2=0 lies inside -4 C: 12/52 By Couchy's Residue theorem, f(z) dz = 2 Ti (R1); where R1 =







Puffin

$$R2 = Rel \left\{ f(z) \right\}_{Z = \frac{\pi}{2}}$$

$$= P(z)$$

$$= 8 |m(z)|$$

$$= \frac{8im(z)}{-8im2} | z - \frac{\pi}{2}$$

$$= (-1),$$

$$= (-1),$$

 $so, f(z)dz = 2\pi i (-1-1)$
 $= -4\pi i$

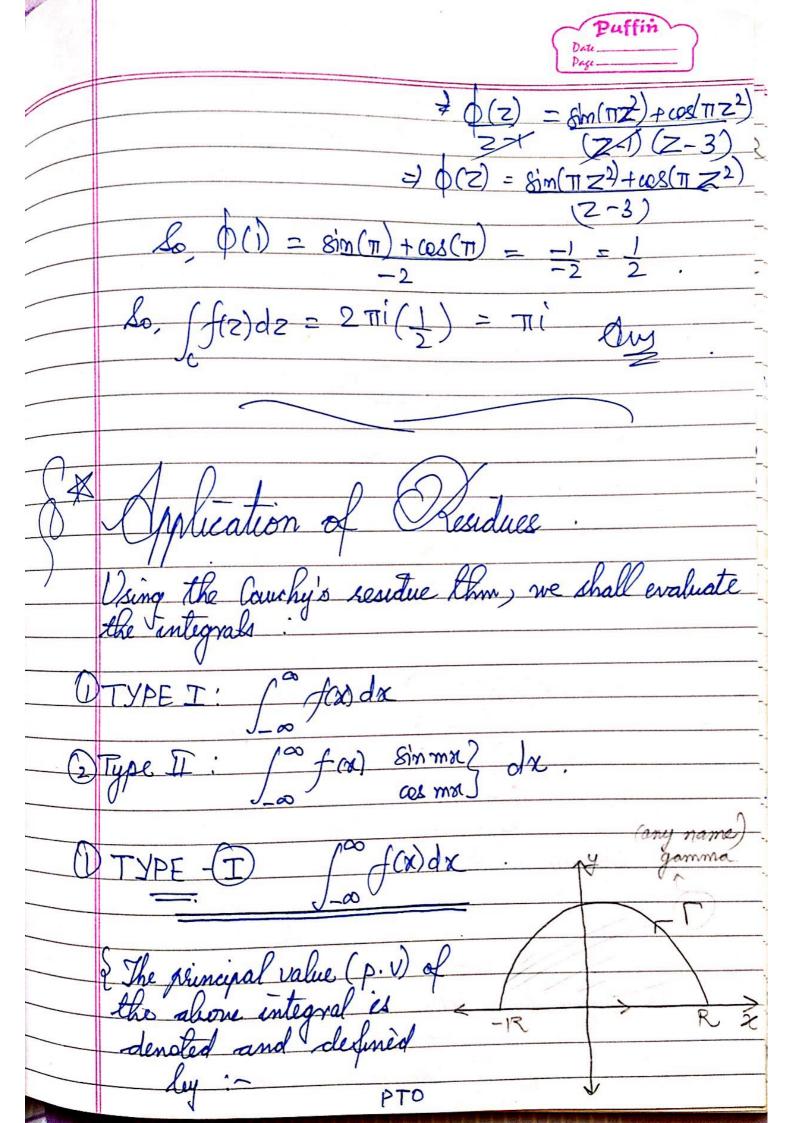
(3)
$$\int_{C} g'_{11}(\pi z^{2}) + cos(\pi z^{2}) dz$$
.

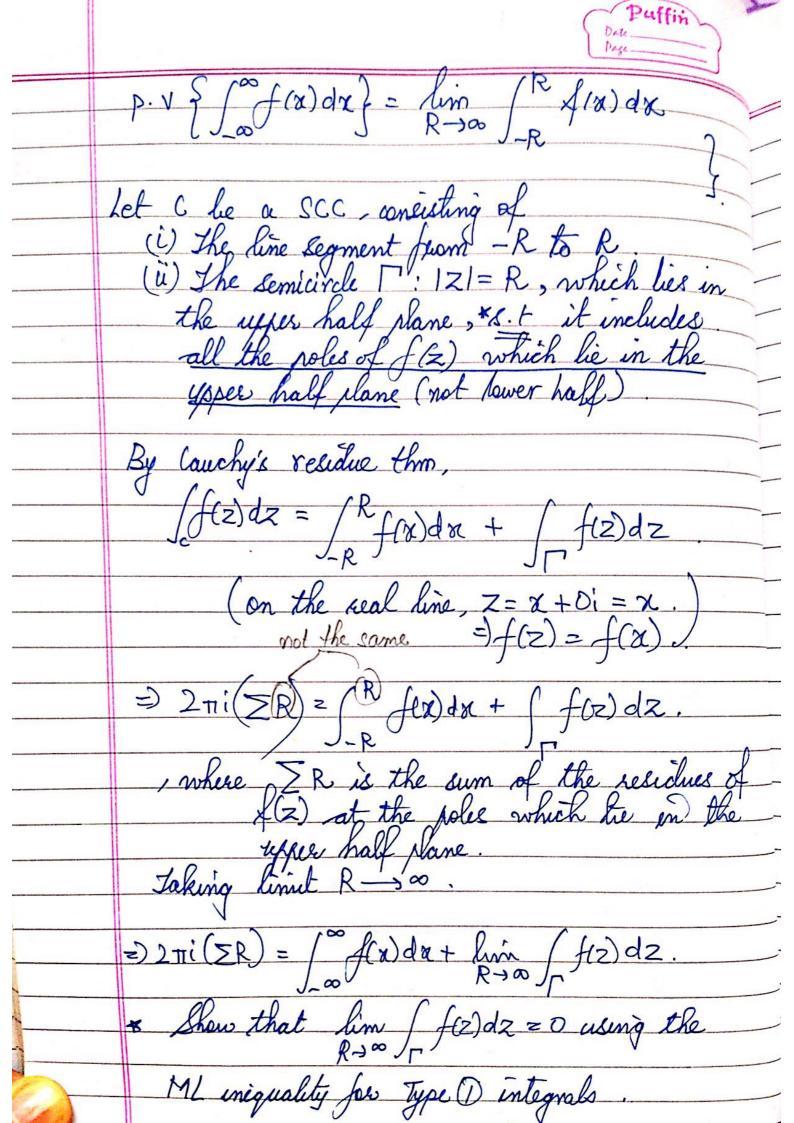
Let
$$f(z) = \frac{8im(\pi z^2) + \cos(\pi z^2)}{(z-1)(z-3)}$$

Let
$$f(z) = \frac{8im(\pi z^2)}{(z^{-1})(z^{-3})}$$

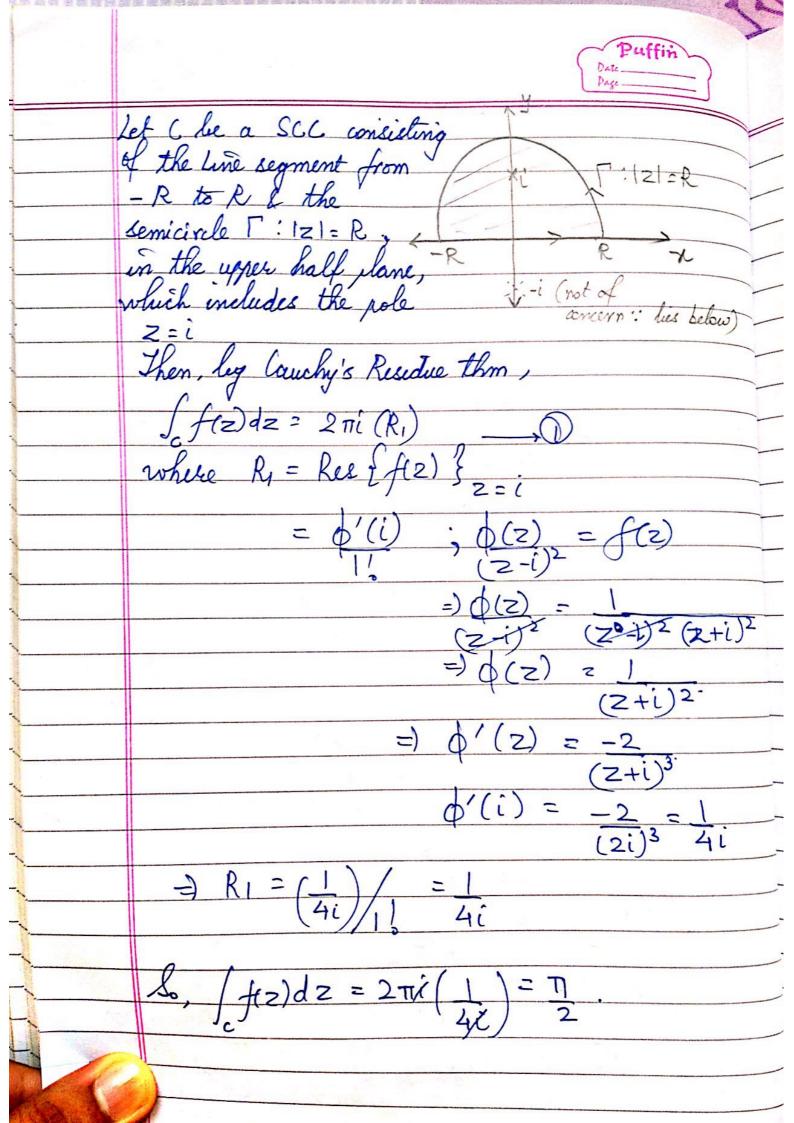
The poles are given by $(z^{-1})(z^{-3}) = 0 \Rightarrow z = 1, 3$ (Simple poles)

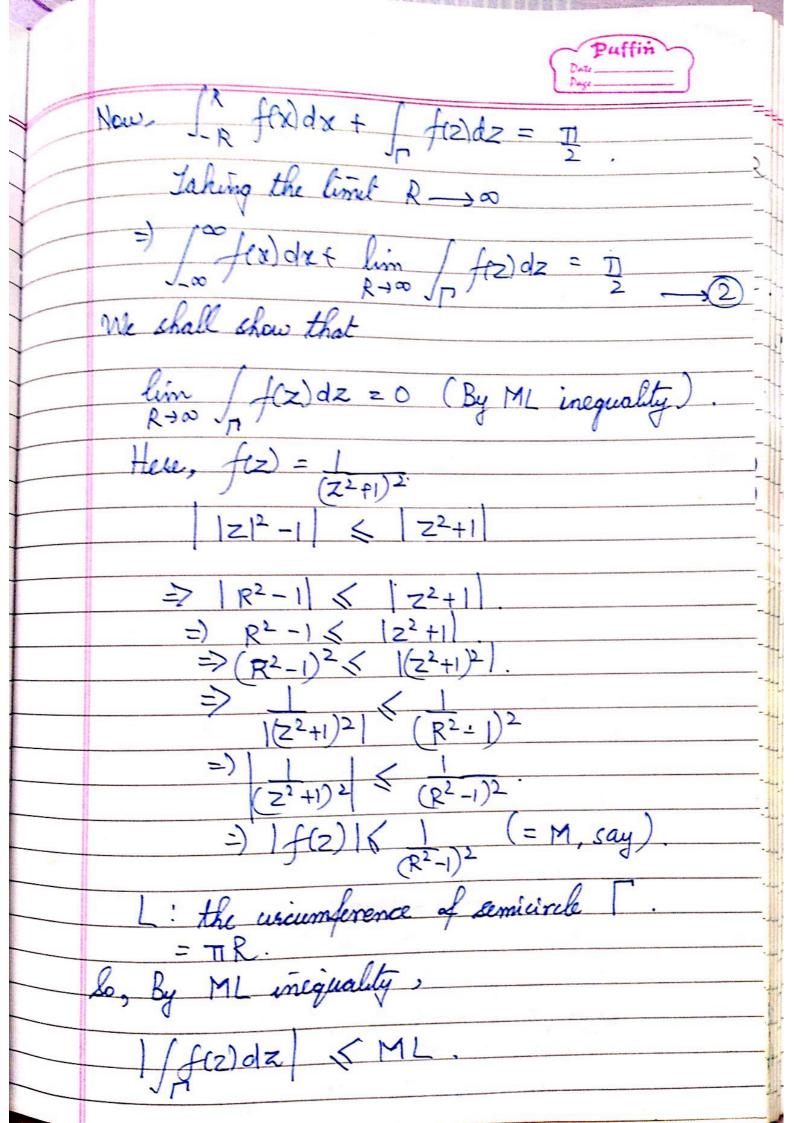
$$R_1 = \text{Res} \left\{ f(2) \right\}_{2=1}$$

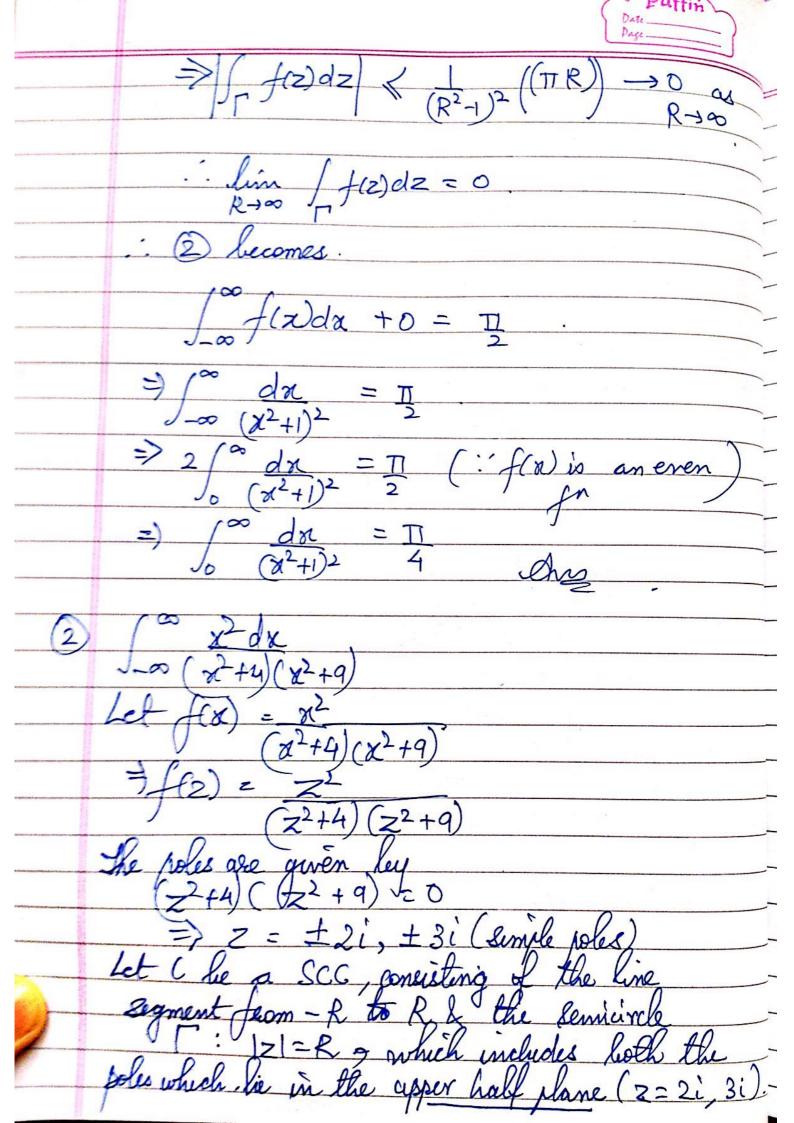


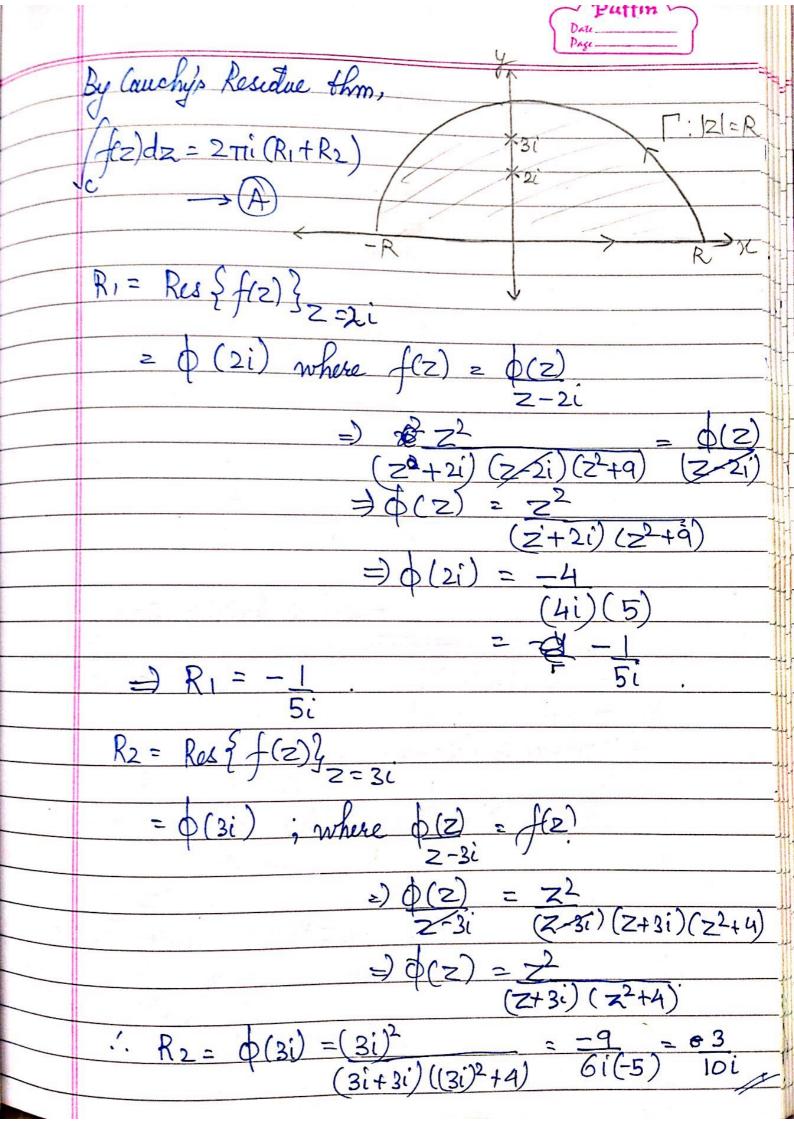


Notel) To evaluate type II integrals, we consider I f(z) eime de le proceed as alove. & · We shall use the Jordon's Lemma to show that lim f(z) e imz dz 20, & Evaluate the integrals: If fla is an even for $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ $\int_{a}^{a} f(x) dx = 0, \text{ if } f(x) \text{ is odd}$ 24+1 Dansider for dx Let $f(x) = \int_{(\chi^2 + 1)^2}$ $(z^2+1)^2$ The poles are given by (order = 2) (double poles)









$$\int_{C} f(z) dz = 2\pi i \left\{ R_{1} + R_{2} \right\}$$

$$= 2\pi i \left(-\frac{1}{5i} + \frac{3}{10i} \right)$$

$$= 2\pi i \left(\frac{1}{loi}\right)$$

$$= \int_{-R}^{R} f(x) dx + \int_{\Gamma} f(z) dz = I$$

Jaking limit R→00

=)
$$\int_{-\infty}^{\infty} f(x) dx + \lim_{R \to \infty} \int_{\Gamma} f(z) dz = \frac{\pi}{5}$$
. \longrightarrow (1)

Using D inequality.

$$|z^{2}+4| > |z|^{2}-|4|$$

$$|z^{2}+4| > |R^{2}-4|$$

$$|z^{2}+4| > |R^{2}-4|$$

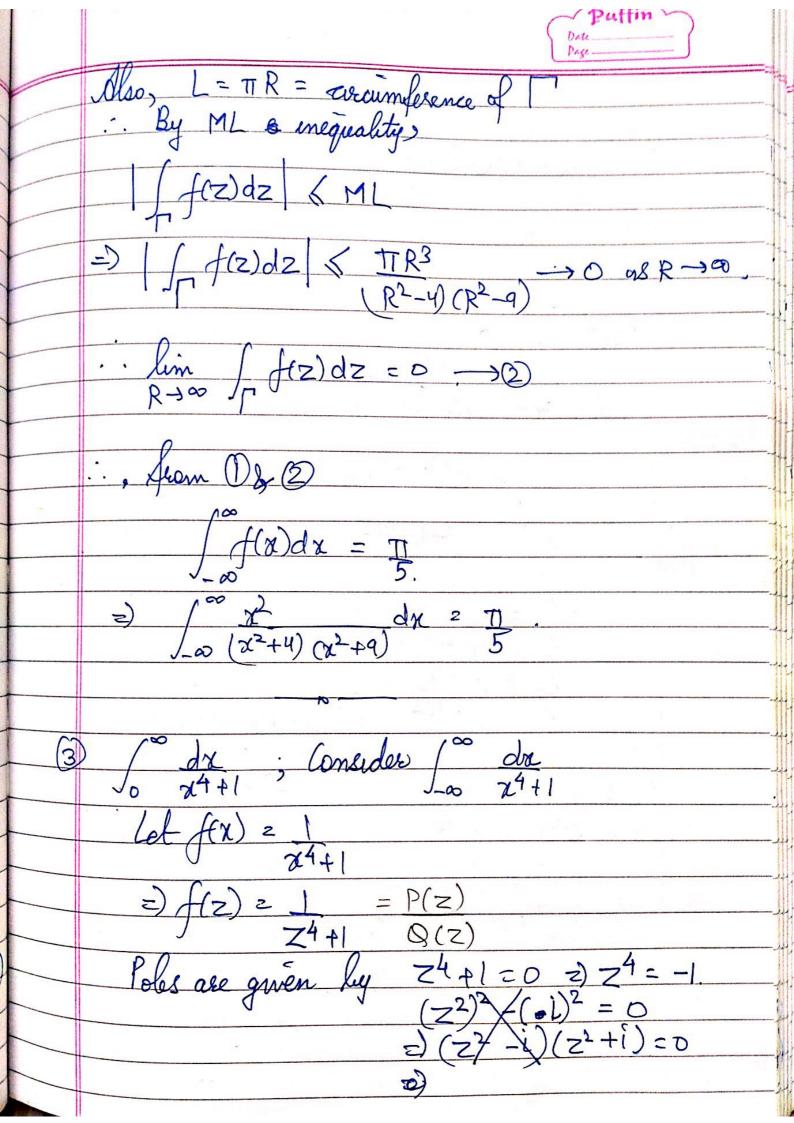
$$|z^{2}+4| > |R^{2}-4|$$

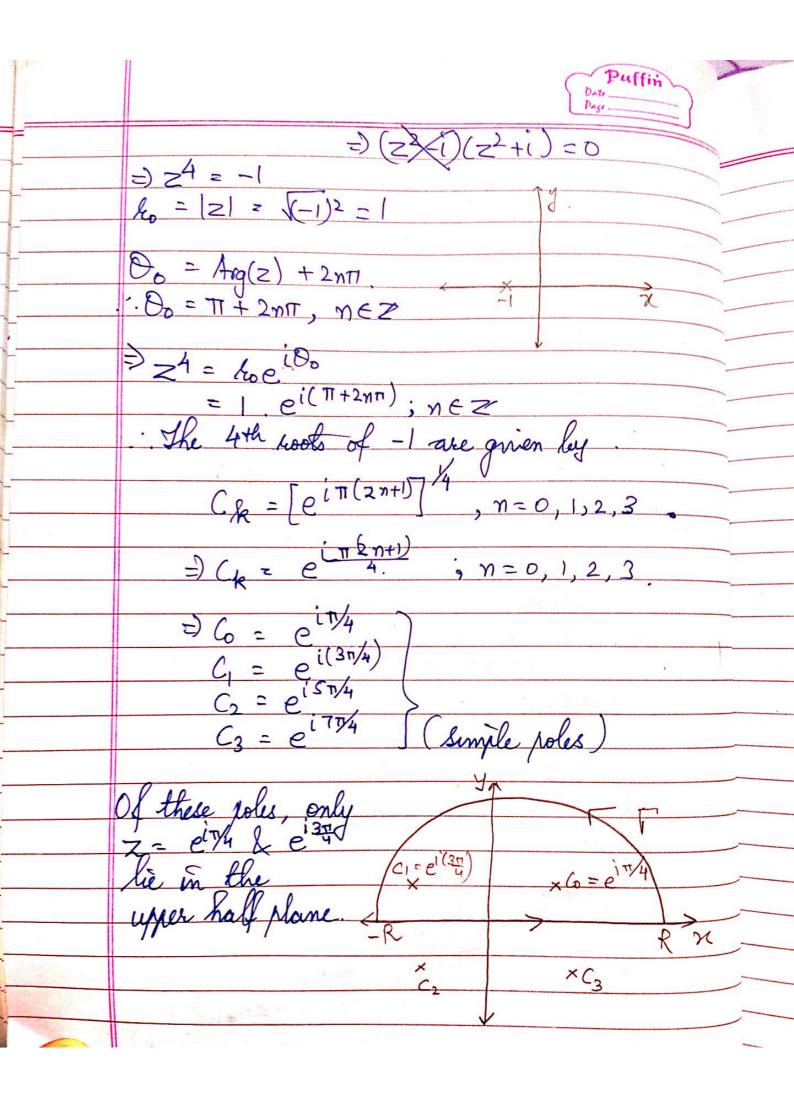
=)
$$\frac{1}{12^{2}+41}$$
 $(R^{2}-4)$ Also, $|z^{2}|=|z|^{2}=R^{2}$

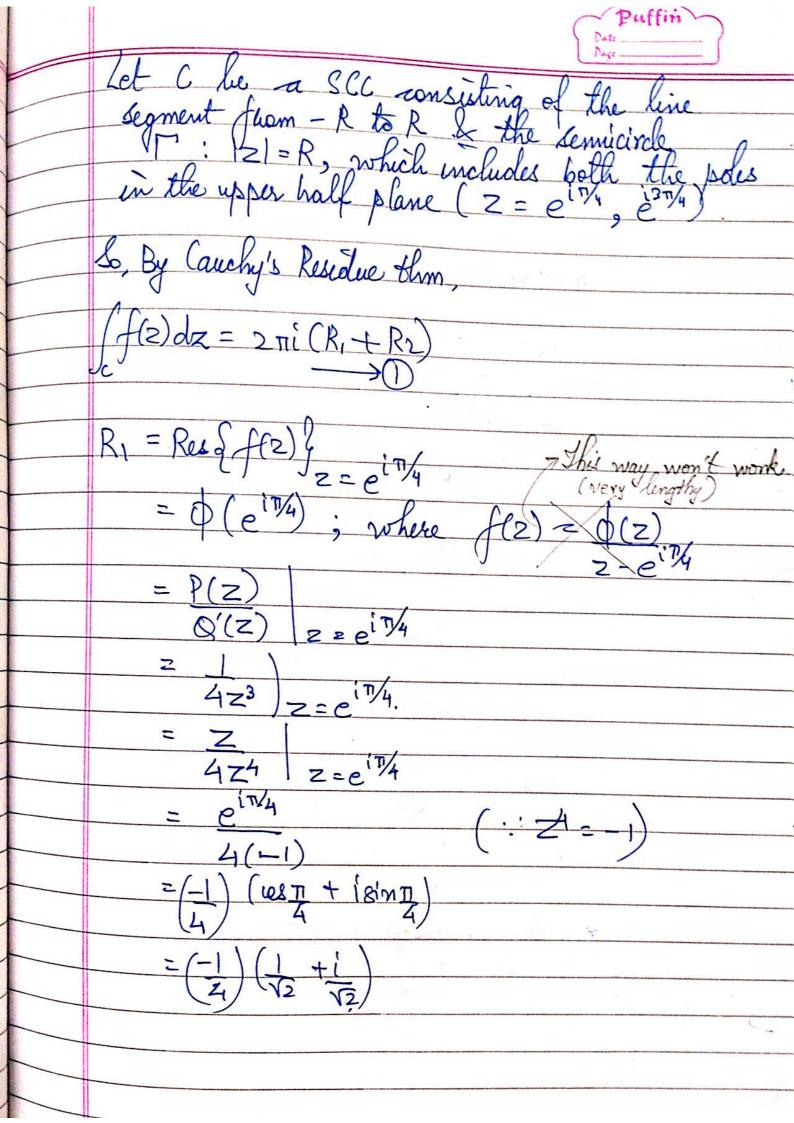
$$|z| = |z|^{2} = |z|^{2}$$

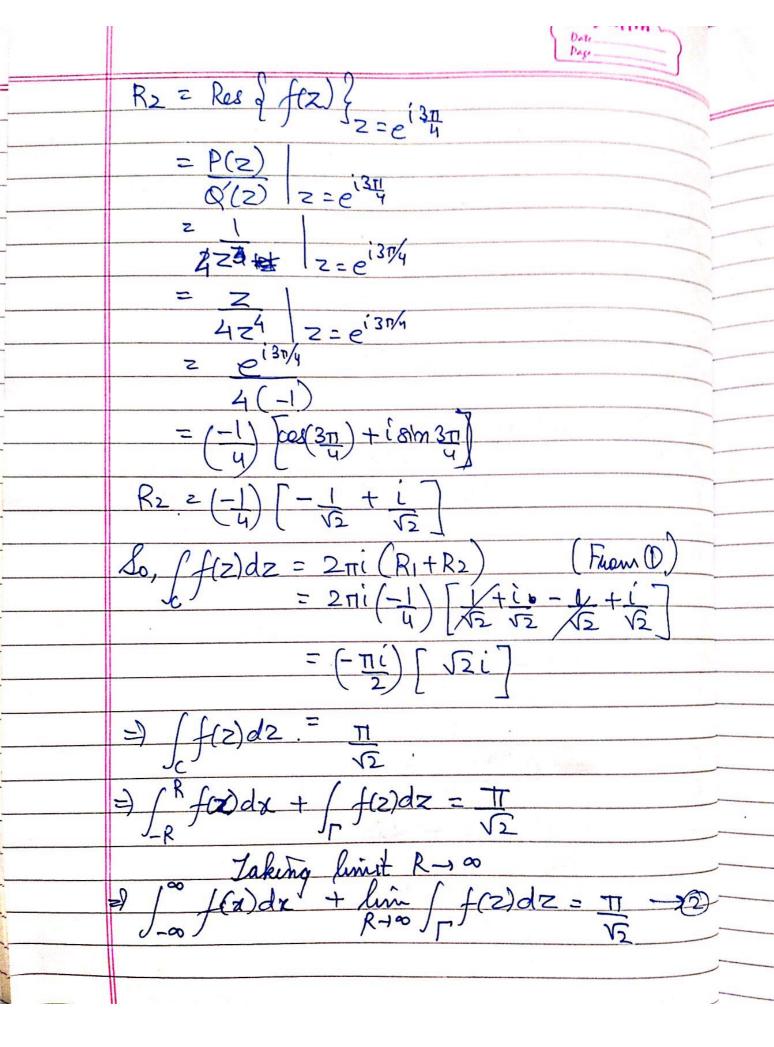
$$|z| + |z|^{2} + |z|^{2} + |z|^{2} + |z|^{2} + |z|^{2} + |z|^{2}$$

$$|z|^{2} + |z|^{2} + |z$$







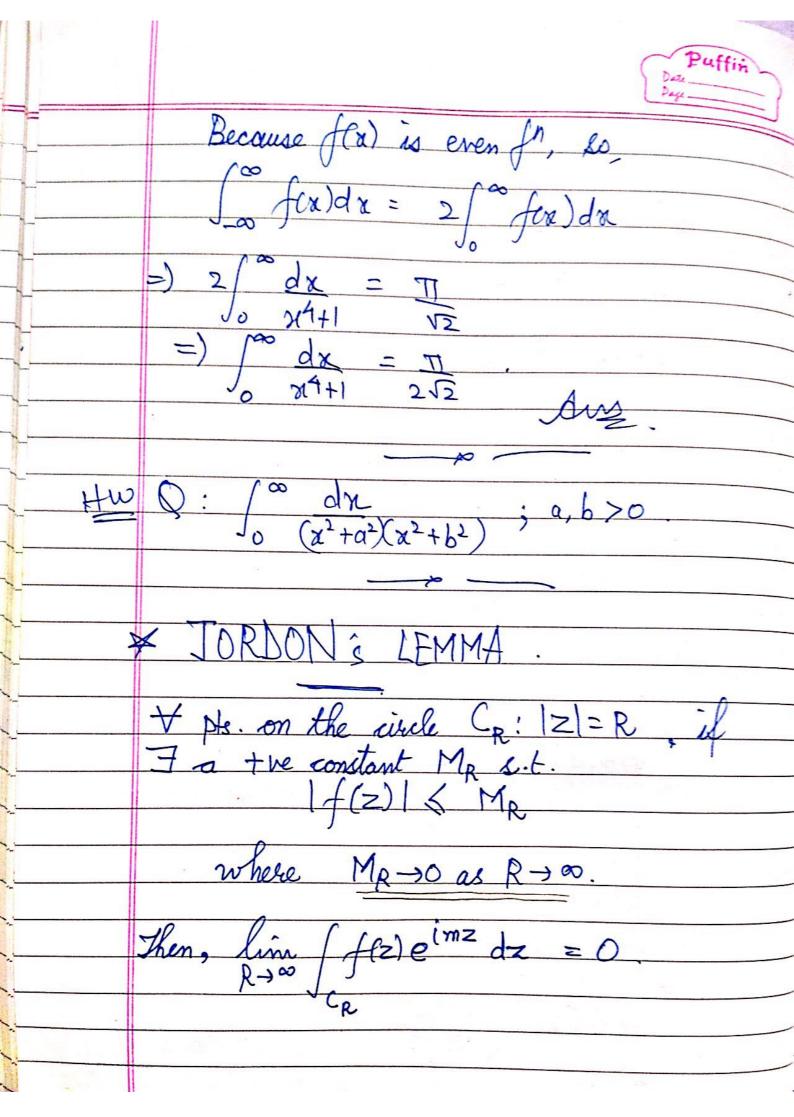


By A inequality (R4-1) (= M).

(R4-1)

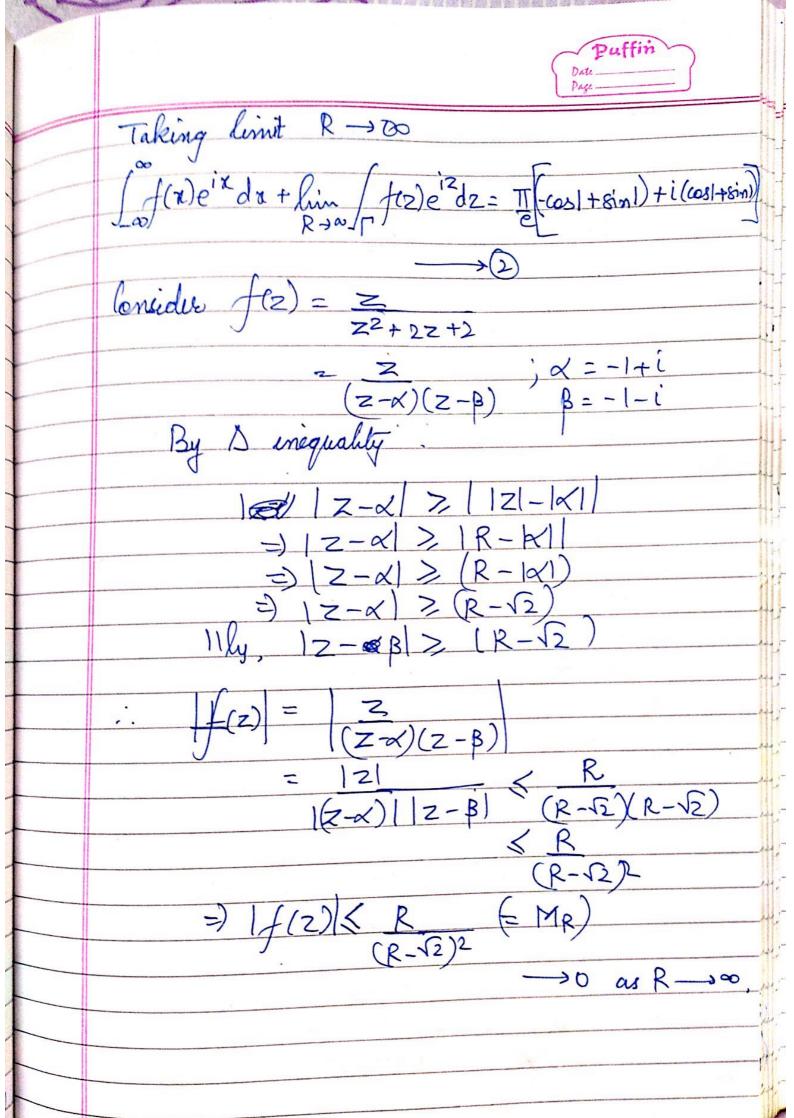
Also, L= ΠR, Circumference of 1

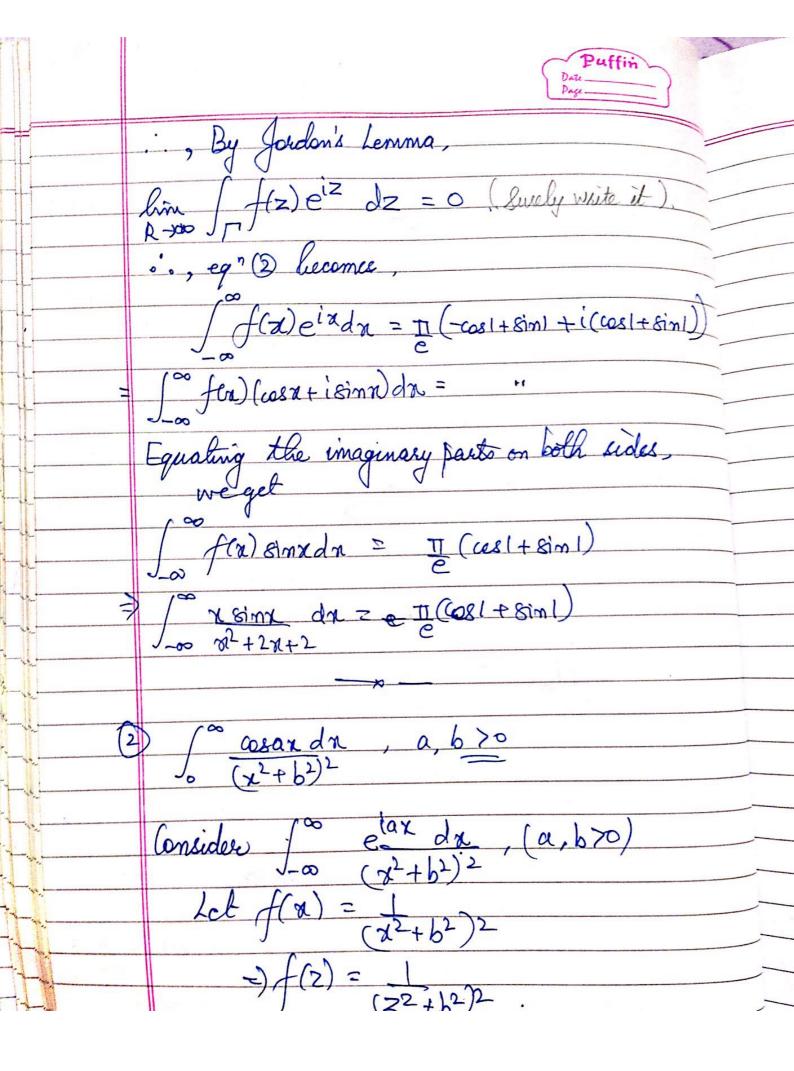
∴ By M2 inequality.

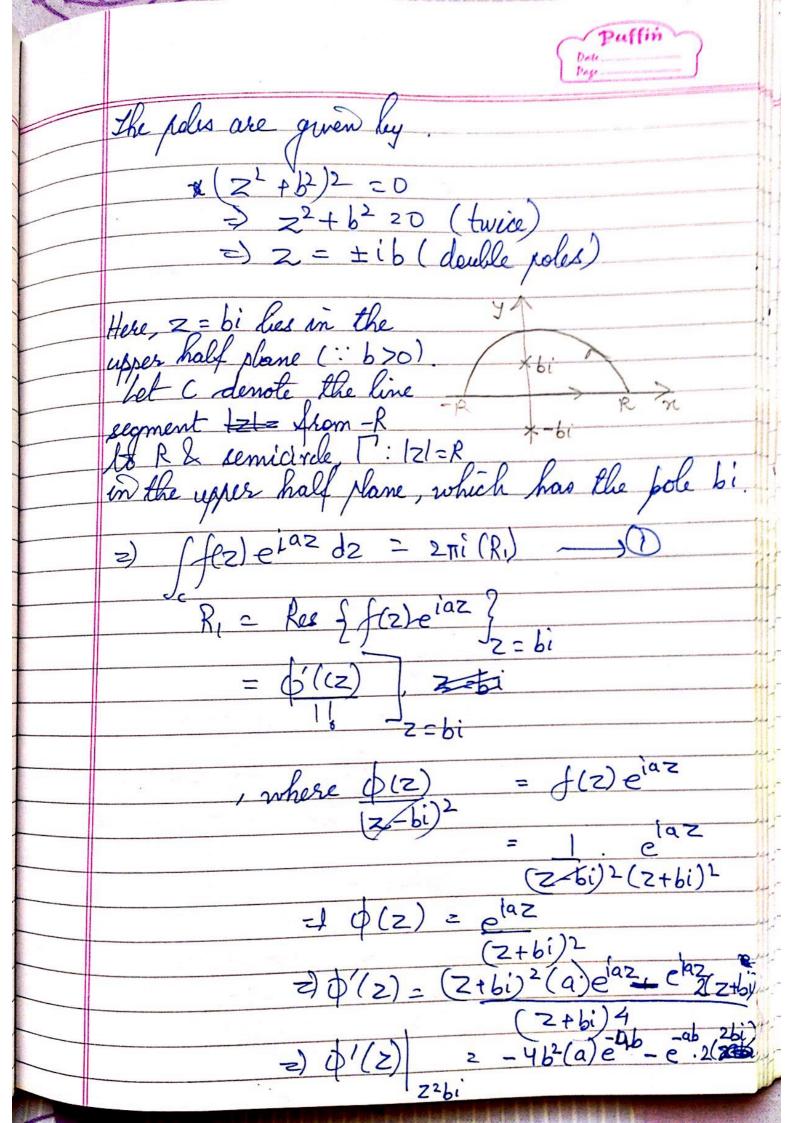


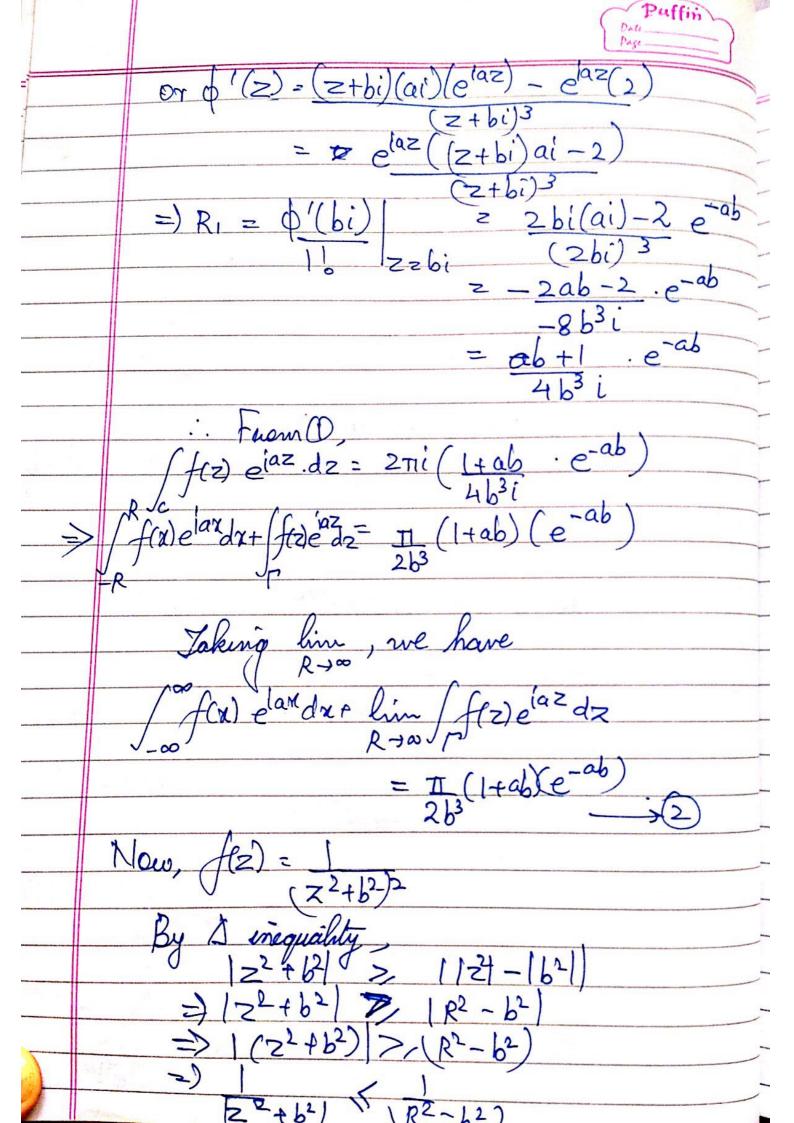
Puffin
Evaluate
$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2} dx$
$\frac{2}{\sqrt{a^2+b^2}} = \frac{a + a + b^2}{\sqrt{a^2+b^2}} = \frac{a + a + b + b^2}{\sqrt{a^2+b^2}} = a + a + b + b + b + b + b + b + b + b + $
$\int_{-\infty}^{\infty} \frac{\cos x dx}{(x^2+6^2)} \left(a, 670\right)$
$\frac{B}{\int_{-\infty}^{\infty}} \frac{28m2x}{x^2+3} dx$
D Let we shall consider $\int_{-\infty}^{\infty} \frac{\pi e^{i\pi}}{\pi^2 + 2\pi + 2}$
Let $f(x) = \frac{x}{x^2 + 2x + 2}$
=) f(z) = z
$\frac{z^2 + 2z + 2}{z^2 + 2z + 2}$ The poly we given by $\frac{z^2 + 2z + 2z + 2z}{z^2 + 2z + 2z}$
=> Z = -1 ± i (Simple poles)
Only the role $Z = -1 \pm i$ (Simple roles) the upper half role.
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ \hline -R & & & \\ \end{array}$

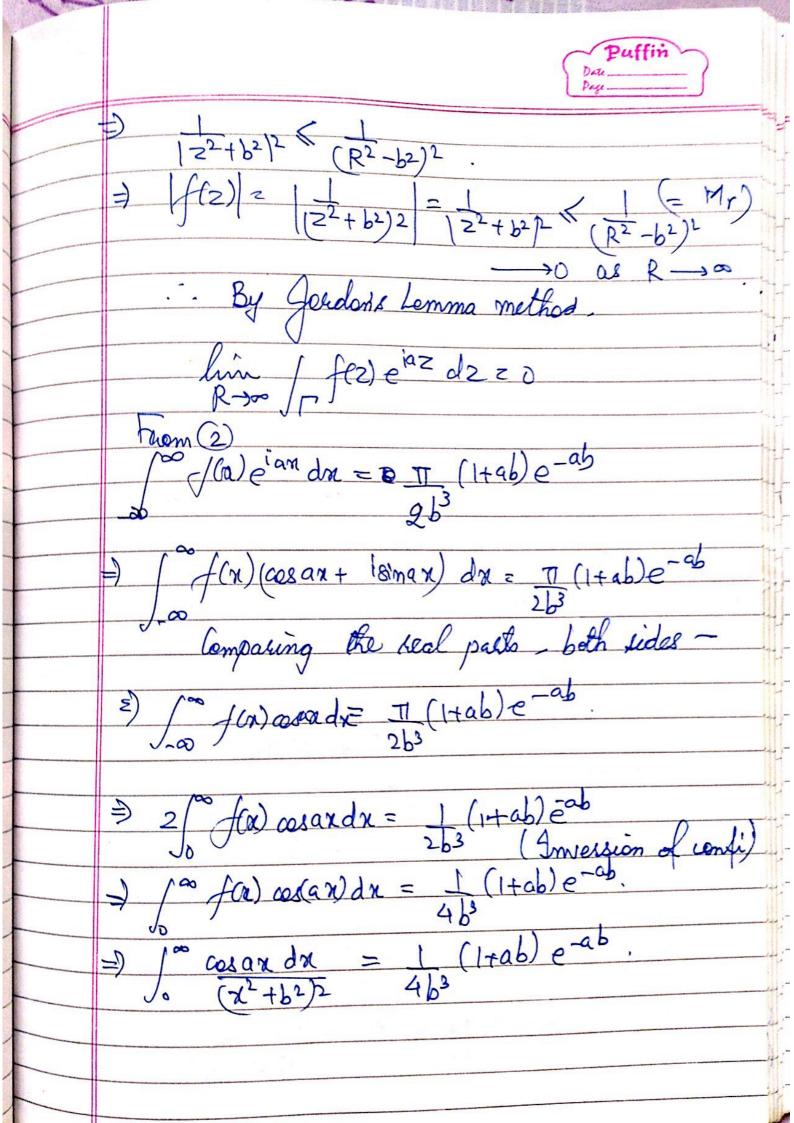
Let C be a SCC consisting of the line =
Segment -R to R & the semicircle, \(\Gamma : |\z| = R \)
Segment the upper half plane, which includes the
role -1+i 2ni (R1) — R1 = Res (f(z)eiz) Res (fcz)e12 (-1+i) e-1 (cos)-isin 271 [-1+i][[es]-isin] TI (+12)(-cos+8in1)+ E ((cos+8in1) + f(z)e12d2 = II (-cos) + sim) +

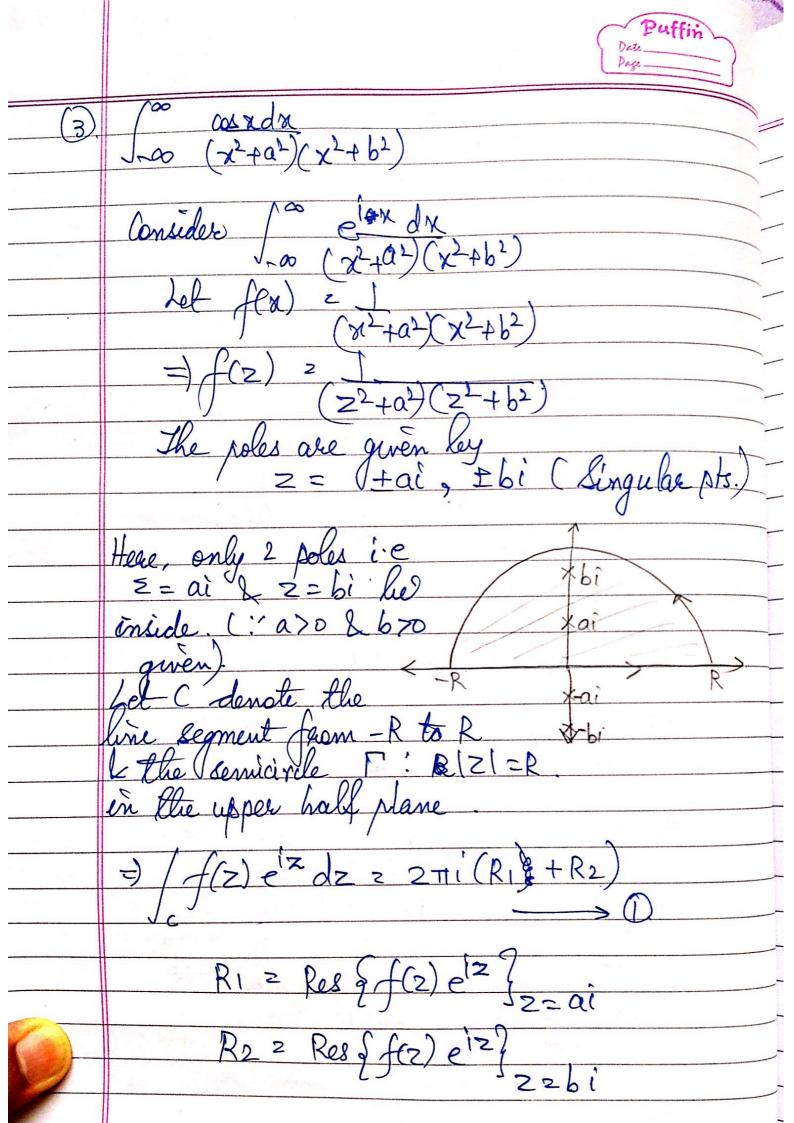












Respectively. $e^{iz} = \phi(z)$ z-aie) piz $(z-ai)(z+ai)(z^2+b^2) = 0(z)$ =) $0(z) = e^{|z|}$ (z+ai)(z2+b2) So, Res (f(z)e12) = 0 (ai) e12 $= (2ai)(-a^2+b^2)$ $= e^{-a}$ $= 2ai(b^2-a^2)$ RI $||y|, R_2 = e^{-b}$ 2bi (a2-b2) $= \frac{2b(4x - b^{2})}{\int f(z)e^{iz}dz} = 2\pi i \int \frac{e^{-a}}{2ai(b^{2}-a^{2})} + \frac{e^{-b}}{2bi(a^{2}-b^{2})}$ $= \pi \left[-\frac{e^{-a}}{a^{2}-b^{2}} + \frac{e^{-b}}{b(a^{2}-b^{2})} \right]$ $= \int f(z)e^{iz}dz = \pi \int \frac{e^{-b}}{a^{2}-b^{2}} = \frac{e^{-a}}{a^{2}-b^{2}}$ $= \int \frac{e^{-b}}{a^{2}-b^{2}} = \frac{e^{-a}}{a^{2}-b^{2}}$) / f(x)e¹xdx + (f(2)e¹²dz=II (e^{-b}-e^{-a}) Taking limit P->0. f(x) e¹x dx + lin f(z) e¹2dz = # (e^{-b} - e^{-q} R+00 / a²-b² (b) a

